Properties

Label 252.9.bg
Level $252$
Weight $9$
Character orbit 252.bg
Rep. character $\chi_{252}(29,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $96$
Newform subspaces $1$
Sturm bound $432$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 252.bg (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(432\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(252, [\chi])\).

Total New Old
Modular forms 780 96 684
Cusp forms 756 96 660
Eisenstein series 24 0 24

Trace form

\( 96 q - 42 q^{3} - 882 q^{5} - 14642 q^{9} + O(q^{10}) \) \( 96 q - 42 q^{3} - 882 q^{5} - 14642 q^{9} - 6102 q^{11} - 63218 q^{15} - 354144 q^{19} + 81634 q^{21} - 689760 q^{23} + 4088394 q^{25} - 2939076 q^{27} - 1902474 q^{29} + 613830 q^{31} - 3732526 q^{33} + 4437300 q^{37} - 2690876 q^{39} + 8275176 q^{41} - 2941680 q^{43} + 7299362 q^{45} - 7663950 q^{47} - 39530064 q^{49} - 23625052 q^{51} + 8608908 q^{55} + 28697652 q^{57} + 38291778 q^{59} + 7577556 q^{63} + 42391494 q^{65} + 47903562 q^{67} - 52586968 q^{69} - 32396448 q^{73} + 245976220 q^{75} + 11461314 q^{79} - 16224230 q^{81} - 104964174 q^{83} + 108387294 q^{85} - 213493700 q^{87} - 12590844 q^{91} - 88124258 q^{93} + 293841792 q^{95} + 9277590 q^{97} - 77959808 q^{99} + O(q^{100}) \)

Decomposition of \(S_{9}^{\mathrm{new}}(252, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
252.9.bg.a \(96\) \(102.659\) None \(0\) \(-42\) \(-882\) \(0\)

Decomposition of \(S_{9}^{\mathrm{old}}(252, [\chi])\) into lower level spaces

\( S_{9}^{\mathrm{old}}(252, [\chi]) \cong \) \(S_{9}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)