Properties

Label 252.8.t.a
Level $252$
Weight $8$
Character orbit 252.t
Analytic conductor $78.721$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,8,Mod(17,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.17");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 252.t (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.7210264220\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 36 q + 2634 q^{7}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 36 q + 2634 q^{7} - 47862 q^{19} - 360762 q^{25} + 486018 q^{31} - 972270 q^{37} + 298788 q^{43} + 1556886 q^{49} + 4324644 q^{61} - 2969562 q^{67} - 5157378 q^{73} + 7676514 q^{79} - 15214128 q^{85} - 6114678 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
17.1 0 0 0 −275.537 477.244i 0 877.605 230.982i 0 0 0
17.2 0 0 0 −219.318 379.869i 0 −692.530 + 586.468i 0 0 0
17.3 0 0 0 −175.339 303.695i 0 −205.988 883.805i 0 0 0
17.4 0 0 0 −155.757 269.780i 0 895.574 + 146.596i 0 0 0
17.5 0 0 0 −148.283 256.835i 0 −446.098 790.278i 0 0 0
17.6 0 0 0 −116.642 202.030i 0 −84.3560 + 903.564i 0 0 0
17.7 0 0 0 −67.6516 117.176i 0 −907.423 11.2432i 0 0 0
17.8 0 0 0 −34.8304 60.3281i 0 734.248 + 533.313i 0 0 0
17.9 0 0 0 −21.6450 37.4903i 0 487.468 765.452i 0 0 0
17.10 0 0 0 21.6450 + 37.4903i 0 487.468 765.452i 0 0 0
17.11 0 0 0 34.8304 + 60.3281i 0 734.248 + 533.313i 0 0 0
17.12 0 0 0 67.6516 + 117.176i 0 −907.423 11.2432i 0 0 0
17.13 0 0 0 116.642 + 202.030i 0 −84.3560 + 903.564i 0 0 0
17.14 0 0 0 148.283 + 256.835i 0 −446.098 790.278i 0 0 0
17.15 0 0 0 155.757 + 269.780i 0 895.574 + 146.596i 0 0 0
17.16 0 0 0 175.339 + 303.695i 0 −205.988 883.805i 0 0 0
17.17 0 0 0 219.318 + 379.869i 0 −692.530 + 586.468i 0 0 0
17.18 0 0 0 275.537 + 477.244i 0 877.605 230.982i 0 0 0
89.1 0 0 0 −275.537 + 477.244i 0 877.605 + 230.982i 0 0 0
89.2 0 0 0 −219.318 + 379.869i 0 −692.530 586.468i 0 0 0
See all 36 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 17.18
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.d odd 6 1 inner
21.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 252.8.t.a 36
3.b odd 2 1 inner 252.8.t.a 36
7.d odd 6 1 inner 252.8.t.a 36
21.g even 6 1 inner 252.8.t.a 36
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.8.t.a 36 1.a even 1 1 trivial
252.8.t.a 36 3.b odd 2 1 inner
252.8.t.a 36 7.d odd 6 1 inner
252.8.t.a 36 21.g even 6 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{8}^{\mathrm{new}}(252, [\chi])\).