Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [252,8,Mod(85,252)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(252, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2, 0]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("252.85");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 252.j (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(78.7210264220\) |
Analytic rank: | \(0\) |
Dimension: | \(42\) |
Relative dimension: | \(21\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
85.1 | 0 | −46.3084 | + | 6.52189i | 0 | −45.8869 | + | 79.4784i | 0 | 171.500 | + | 297.047i | 0 | 2101.93 | − | 604.036i | 0 | ||||||||||
85.2 | 0 | −42.6661 | + | 19.1470i | 0 | 199.603 | − | 345.722i | 0 | 171.500 | + | 297.047i | 0 | 1453.79 | − | 1633.85i | 0 | ||||||||||
85.3 | 0 | −41.3339 | − | 21.8748i | 0 | 28.6503 | − | 49.6238i | 0 | 171.500 | + | 297.047i | 0 | 1229.99 | + | 1808.34i | 0 | ||||||||||
85.4 | 0 | −39.4677 | + | 25.0858i | 0 | −137.863 | + | 238.785i | 0 | 171.500 | + | 297.047i | 0 | 928.402 | − | 1980.16i | 0 | ||||||||||
85.5 | 0 | −39.1578 | − | 25.5669i | 0 | 185.330 | − | 321.000i | 0 | 171.500 | + | 297.047i | 0 | 879.665 | + | 2002.29i | 0 | ||||||||||
85.6 | 0 | −34.4001 | − | 31.6802i | 0 | −211.363 | + | 366.092i | 0 | 171.500 | + | 297.047i | 0 | 179.735 | + | 2179.60i | 0 | ||||||||||
85.7 | 0 | −18.2767 | + | 43.0461i | 0 | 65.2686 | − | 113.049i | 0 | 171.500 | + | 297.047i | 0 | −1518.93 | − | 1573.48i | 0 | ||||||||||
85.8 | 0 | −17.6514 | − | 43.3062i | 0 | −131.455 | + | 227.687i | 0 | 171.500 | + | 297.047i | 0 | −1563.85 | + | 1528.83i | 0 | ||||||||||
85.9 | 0 | −10.5399 | + | 45.5622i | 0 | −255.827 | + | 443.105i | 0 | 171.500 | + | 297.047i | 0 | −1964.82 | − | 960.442i | 0 | ||||||||||
85.10 | 0 | −6.63534 | + | 46.2922i | 0 | 117.741 | − | 203.933i | 0 | 171.500 | + | 297.047i | 0 | −2098.94 | − | 614.329i | 0 | ||||||||||
85.11 | 0 | 5.39849 | − | 46.4527i | 0 | 97.1422 | − | 168.255i | 0 | 171.500 | + | 297.047i | 0 | −2128.71 | − | 501.549i | 0 | ||||||||||
85.12 | 0 | 5.48874 | − | 46.4422i | 0 | 61.8162 | − | 107.069i | 0 | 171.500 | + | 297.047i | 0 | −2126.75 | − | 509.818i | 0 | ||||||||||
85.13 | 0 | 26.4041 | + | 38.5982i | 0 | 24.2601 | − | 42.0197i | 0 | 171.500 | + | 297.047i | 0 | −792.648 | + | 2038.30i | 0 | ||||||||||
85.14 | 0 | 27.2294 | + | 38.0205i | 0 | −62.2878 | + | 107.886i | 0 | 171.500 | + | 297.047i | 0 | −704.122 | + | 2070.55i | 0 | ||||||||||
85.15 | 0 | 29.1840 | − | 36.5417i | 0 | −220.853 | + | 382.528i | 0 | 171.500 | + | 297.047i | 0 | −483.588 | − | 2132.86i | 0 | ||||||||||
85.16 | 0 | 31.2103 | + | 34.8270i | 0 | 229.083 | − | 396.783i | 0 | 171.500 | + | 297.047i | 0 | −238.838 | + | 2173.92i | 0 | ||||||||||
85.17 | 0 | 35.1126 | − | 30.8886i | 0 | 29.1202 | − | 50.4377i | 0 | 171.500 | + | 297.047i | 0 | 278.795 | − | 2169.16i | 0 | ||||||||||
85.18 | 0 | 42.6230 | + | 19.2426i | 0 | −72.0794 | + | 124.845i | 0 | 171.500 | + | 297.047i | 0 | 1446.45 | + | 1640.35i | 0 | ||||||||||
85.19 | 0 | 42.6693 | − | 19.1397i | 0 | 242.229 | − | 419.553i | 0 | 171.500 | + | 297.047i | 0 | 1454.35 | − | 1633.35i | 0 | ||||||||||
85.20 | 0 | 45.4460 | + | 11.0301i | 0 | −191.548 | + | 331.771i | 0 | 171.500 | + | 297.047i | 0 | 1943.68 | + | 1002.54i | 0 | ||||||||||
See all 42 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 252.8.j.b | ✓ | 42 |
9.c | even | 3 | 1 | inner | 252.8.j.b | ✓ | 42 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
252.8.j.b | ✓ | 42 | 1.a | even | 1 | 1 | trivial |
252.8.j.b | ✓ | 42 | 9.c | even | 3 | 1 | inner |