Defining parameters
Level: | \( N \) | \(=\) | \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 252.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 63 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Sturm bound: | \(384\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(252, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 684 | 112 | 572 |
Cusp forms | 660 | 112 | 548 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(252, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{8}^{\mathrm{old}}(252, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(252, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)