Defining parameters
Level: | \( N \) | \(=\) | \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 252.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(252, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 348 | 20 | 328 |
Cusp forms | 324 | 20 | 304 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(252, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
252.8.f.a | $20$ | $78.721$ | \(\mathbb{Q}[x]/(x^{20} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-2468\) | \(q+\beta _{1}q^{5}+(-123+\beta _{6})q^{7}-\beta _{9}q^{11}+\cdots\) |
Decomposition of \(S_{8}^{\mathrm{old}}(252, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(252, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)