Properties

Label 252.8.f
Level $252$
Weight $8$
Character orbit 252.f
Rep. character $\chi_{252}(125,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $1$
Sturm bound $384$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 252.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(384\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(252, [\chi])\).

Total New Old
Modular forms 348 20 328
Cusp forms 324 20 304
Eisenstein series 24 0 24

Trace form

\( 20 q - 2468 q^{7} + O(q^{10}) \) \( 20 q - 2468 q^{7} + 548780 q^{25} - 257344 q^{37} - 1589224 q^{43} - 291556 q^{49} - 11860256 q^{67} - 1991600 q^{79} + 11742576 q^{85} - 11268816 q^{91} + O(q^{100}) \)

Decomposition of \(S_{8}^{\mathrm{new}}(252, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
252.8.f.a 252.f 21.c $20$ $78.721$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 252.8.f.a \(0\) \(0\) \(0\) \(-2468\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{5}+(-123+\beta _{6})q^{7}-\beta _{9}q^{11}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(252, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(252, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)