Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [252,8,Mod(71,252)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(252, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 0]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("252.71");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 252.e (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(78.7210264220\) |
Analytic rank: | \(0\) |
Dimension: | \(84\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
71.1 | −11.2902 | − | 0.728783i | 0 | 126.938 | + | 16.4562i | 507.809i | 0 | 343.000i | −1421.16 | − | 278.305i | 0 | 370.082 | − | 5733.27i | ||||||||||
71.2 | −11.2902 | + | 0.728783i | 0 | 126.938 | − | 16.4562i | − | 507.809i | 0 | − | 343.000i | −1421.16 | + | 278.305i | 0 | 370.082 | + | 5733.27i | ||||||||
71.3 | −11.2162 | − | 1.48214i | 0 | 123.607 | + | 33.2480i | 80.1172i | 0 | − | 343.000i | −1337.12 | − | 556.119i | 0 | 118.745 | − | 898.610i | |||||||||
71.4 | −11.2162 | + | 1.48214i | 0 | 123.607 | − | 33.2480i | − | 80.1172i | 0 | 343.000i | −1337.12 | + | 556.119i | 0 | 118.745 | + | 898.610i | |||||||||
71.5 | −11.2131 | − | 1.50530i | 0 | 123.468 | + | 33.7582i | − | 353.743i | 0 | 343.000i | −1333.65 | − | 564.392i | 0 | −532.489 | + | 3966.56i | |||||||||
71.6 | −11.2131 | + | 1.50530i | 0 | 123.468 | − | 33.7582i | 353.743i | 0 | − | 343.000i | −1333.65 | + | 564.392i | 0 | −532.489 | − | 3966.56i | |||||||||
71.7 | −10.8566 | − | 3.18337i | 0 | 107.732 | + | 69.1213i | 512.680i | 0 | 343.000i | −949.569 | − | 1093.38i | 0 | 1632.05 | − | 5565.97i | ||||||||||
71.8 | −10.8566 | + | 3.18337i | 0 | 107.732 | − | 69.1213i | − | 512.680i | 0 | − | 343.000i | −949.569 | + | 1093.38i | 0 | 1632.05 | + | 5565.97i | ||||||||
71.9 | −10.6314 | − | 3.86955i | 0 | 98.0532 | + | 82.2774i | − | 192.805i | 0 | − | 343.000i | −724.067 | − | 1254.14i | 0 | −746.066 | + | 2049.78i | ||||||||
71.10 | −10.6314 | + | 3.86955i | 0 | 98.0532 | − | 82.2774i | 192.805i | 0 | 343.000i | −724.067 | + | 1254.14i | 0 | −746.066 | − | 2049.78i | ||||||||||
71.11 | −10.2476 | − | 4.79436i | 0 | 82.0282 | + | 98.2617i | 145.328i | 0 | − | 343.000i | −369.493 | − | 1400.22i | 0 | 696.754 | − | 1489.27i | |||||||||
71.12 | −10.2476 | + | 4.79436i | 0 | 82.0282 | − | 98.2617i | − | 145.328i | 0 | 343.000i | −369.493 | + | 1400.22i | 0 | 696.754 | + | 1489.27i | |||||||||
71.13 | −9.96852 | − | 5.35058i | 0 | 70.7426 | + | 106.675i | 147.762i | 0 | 343.000i | −134.428 | − | 1441.90i | 0 | 790.614 | − | 1472.97i | ||||||||||
71.14 | −9.96852 | + | 5.35058i | 0 | 70.7426 | − | 106.675i | − | 147.762i | 0 | − | 343.000i | −134.428 | + | 1441.90i | 0 | 790.614 | + | 1472.97i | ||||||||
71.15 | −9.67940 | − | 5.85741i | 0 | 59.3814 | + | 113.392i | − | 181.049i | 0 | 343.000i | 89.4107 | − | 1445.39i | 0 | −1060.48 | + | 1752.44i | |||||||||
71.16 | −9.67940 | + | 5.85741i | 0 | 59.3814 | − | 113.392i | 181.049i | 0 | − | 343.000i | 89.4107 | + | 1445.39i | 0 | −1060.48 | − | 1752.44i | |||||||||
71.17 | −9.44210 | − | 6.23271i | 0 | 50.3066 | + | 117.700i | 254.394i | 0 | − | 343.000i | 258.590 | − | 1424.88i | 0 | 1585.56 | − | 2402.01i | |||||||||
71.18 | −9.44210 | + | 6.23271i | 0 | 50.3066 | − | 117.700i | − | 254.394i | 0 | 343.000i | 258.590 | + | 1424.88i | 0 | 1585.56 | + | 2402.01i | |||||||||
71.19 | −8.97566 | − | 6.88749i | 0 | 33.1249 | + | 123.640i | − | 498.542i | 0 | 343.000i | 554.249 | − | 1337.89i | 0 | −3433.70 | + | 4474.74i | |||||||||
71.20 | −8.97566 | + | 6.88749i | 0 | 33.1249 | − | 123.640i | 498.542i | 0 | − | 343.000i | 554.249 | + | 1337.89i | 0 | −3433.70 | − | 4474.74i | |||||||||
See all 84 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
4.b | odd | 2 | 1 | inner |
12.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 252.8.e.a | ✓ | 84 |
3.b | odd | 2 | 1 | inner | 252.8.e.a | ✓ | 84 |
4.b | odd | 2 | 1 | inner | 252.8.e.a | ✓ | 84 |
12.b | even | 2 | 1 | inner | 252.8.e.a | ✓ | 84 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
252.8.e.a | ✓ | 84 | 1.a | even | 1 | 1 | trivial |
252.8.e.a | ✓ | 84 | 3.b | odd | 2 | 1 | inner |
252.8.e.a | ✓ | 84 | 4.b | odd | 2 | 1 | inner |
252.8.e.a | ✓ | 84 | 12.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{8}^{\mathrm{new}}(252, [\chi])\).