Properties

Label 252.8.bj
Level $252$
Weight $8$
Character orbit 252.bj
Rep. character $\chi_{252}(103,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $664$
Sturm bound $384$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 252.bj (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 252 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(384\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(252, [\chi])\).

Total New Old
Modular forms 680 680 0
Cusp forms 664 664 0
Eisenstein series 16 16 0

Trace form

\( 664 q - 2 q^{2} - 2 q^{4} - 6 q^{5} + 384 q^{6} - 8 q^{8} - 2 q^{9} + O(q^{10}) \) \( 664 q - 2 q^{2} - 2 q^{4} - 6 q^{5} + 384 q^{6} - 8 q^{8} - 2 q^{9} - 6 q^{10} + 13842 q^{12} + 15006 q^{14} - 2 q^{16} - 12 q^{17} + 10202 q^{18} - 98304 q^{20} + 5542 q^{21} + 254 q^{22} + 6558 q^{24} + 4937502 q^{25} - 390 q^{26} + 16380 q^{28} + 64008 q^{29} + 65741 q^{30} + 1274398 q^{32} - 6 q^{33} - 384 q^{34} + 256102 q^{36} - 4 q^{37} + 253287 q^{38} - 234378 q^{40} - 1003958 q^{42} + 7807 q^{44} + 1513494 q^{45} + 254 q^{46} + 6561 q^{48} - 2 q^{49} + 297797 q^{50} - 98307 q^{52} - 4 q^{53} + 5890335 q^{54} + 890118 q^{56} - 884964 q^{57} - 255 q^{58} + 6355397 q^{60} - 8 q^{64} + 3589892 q^{65} - 5556834 q^{66} - 1591398 q^{68} - 13122 q^{69} + 1490963 q^{70} - 17131162 q^{72} - 12 q^{73} - 12022433 q^{74} + 49152 q^{76} - 319558 q^{77} + 4540281 q^{78} - 11290053 q^{80} + 12374446 q^{81} - 390 q^{82} - 28339057 q^{84} - 156254 q^{85} + 5422153 q^{86} - 2097151 q^{88} - 28554192 q^{89} - 12135009 q^{90} + 11290652 q^{92} + 5862846 q^{93} - 17731689 q^{96} - 78087749 q^{98} + O(q^{100}) \)

Decomposition of \(S_{8}^{\mathrm{new}}(252, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.