Properties

Label 252.8.a.h
Level $252$
Weight $8$
Character orbit 252.a
Self dual yes
Analytic conductor $78.721$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,8,Mod(1,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 252.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.7210264220\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4648x^{2} + 2987775 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{5} + 343 q^{7} + (\beta_{2} + 3 \beta_1) q^{11} + ( - \beta_{3} + 2702) q^{13} + 43 \beta_1 q^{17} + (3 \beta_{3} + 4424) q^{19} + ( - 8 \beta_{2} + 179 \beta_1) q^{23} + (7 \beta_{3} + 5539) q^{25}+ \cdots + ( - 714 \beta_{3} + 6397622) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 1372 q^{7} + 10808 q^{13} + 17696 q^{19} + 22156 q^{25} + 87584 q^{31} - 121672 q^{37} - 20464 q^{43} + 470596 q^{49} + 840672 q^{55} + 4844840 q^{61} + 6220976 q^{67} + 10659992 q^{73} + 4446272 q^{79}+ \cdots + 25590488 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 4648x^{2} + 2987775 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 6\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 4\nu^{3} - 13552\nu ) / 35 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 36\nu^{2} - 83664 ) / 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 7\beta_{3} + 83664 ) / 36 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 105\beta_{2} + 6776\beta_1 ) / 12 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−62.2692
−27.7588
27.7588
62.2692
0 0 0 −373.615 0 343.000 0 0 0
1.2 0 0 0 −166.553 0 343.000 0 0 0
1.3 0 0 0 166.553 0 343.000 0 0 0
1.4 0 0 0 373.615 0 343.000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 252.8.a.h 4
3.b odd 2 1 inner 252.8.a.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.8.a.h 4 1.a even 1 1 trivial
252.8.a.h 4 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 167328T_{5}^{2} + 3872156400 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(252))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 3872156400 \) Copy content Toggle raw display
$7$ \( (T - 343)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 12\!\cdots\!64 \) Copy content Toggle raw display
$13$ \( (T^{2} - 5404 T - 56525900)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( (T^{2} - 8848 T - 554868560)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 14\!\cdots\!96 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 26\!\cdots\!96 \) Copy content Toggle raw display
$31$ \( (T^{2} - 43792 T - 69027845840)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 60836 T - 77262457676)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 48\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( (T^{2} + 10232 T - 50013962480)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 19\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 19\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 26\!\cdots\!36 \) Copy content Toggle raw display
$61$ \( (T^{2} - 2422420 T + 563179708756)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + \cdots - 5399987340464)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 49\!\cdots\!44 \) Copy content Toggle raw display
$73$ \( (T^{2} + \cdots + 6272722494820)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots - 31303014973760)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 55\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 52\!\cdots\!16 \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots + 8390968862500)^{2} \) Copy content Toggle raw display
show more
show less