Properties

Label 252.6.k.f.37.4
Level $252$
Weight $6$
Character 252.37
Analytic conductor $40.417$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,6,Mod(37,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.37");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 252.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.4167225929\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 703x^{6} + 2770x^{5} + 427565x^{4} + 718170x^{3} + 42175732x^{2} - 40929504x + 3559792896 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{3}\cdot 7 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.4
Root \(4.59067 + 7.95128i\) of defining polynomial
Character \(\chi\) \(=\) 252.37
Dual form 252.6.k.f.109.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(39.3359 - 68.1317i) q^{5} +(-100.606 - 81.7641i) q^{7} +(345.759 + 598.873i) q^{11} +818.732 q^{13} +(554.638 + 960.661i) q^{17} +(286.523 - 496.273i) q^{19} +(1258.80 - 2180.30i) q^{23} +(-1532.12 - 2653.71i) q^{25} +3258.19 q^{29} +(-5059.55 - 8763.40i) q^{31} +(-9528.17 + 3638.23i) q^{35} +(-2434.81 + 4217.21i) q^{37} +13094.3 q^{41} -9303.64 q^{43} +(6452.90 - 11176.8i) q^{47} +(3436.28 + 16452.0i) q^{49} +(-9770.12 - 16922.3i) q^{53} +54403.0 q^{55} +(-12560.2 - 21755.0i) q^{59} +(15681.1 - 27160.5i) q^{61} +(32205.6 - 55781.7i) q^{65} +(-27971.9 - 48448.8i) q^{67} -20501.0 q^{71} +(33825.0 + 58586.6i) q^{73} +(14180.7 - 88521.1i) q^{77} +(-7039.95 + 12193.5i) q^{79} +77129.1 q^{83} +87268.6 q^{85} +(160.396 - 277.815i) q^{89} +(-82369.7 - 66942.9i) q^{91} +(-22541.3 - 39042.6i) q^{95} -112009. q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 42 q^{7} + 462 q^{11} - 1204 q^{13} - 228 q^{17} + 358 q^{19} + 2148 q^{23} - 5454 q^{25} + 11064 q^{29} + 830 q^{31} - 7692 q^{35} - 3914 q^{37} + 16632 q^{41} - 29036 q^{43} - 41700 q^{47} + 41876 q^{49}+ \cdots - 433356 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 39.3359 68.1317i 0.703662 1.21878i −0.263511 0.964656i \(-0.584880\pi\)
0.967172 0.254121i \(-0.0817862\pi\)
\(6\) 0 0
\(7\) −100.606 81.7641i −0.776033 0.630692i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 345.759 + 598.873i 0.861574 + 1.49229i 0.870410 + 0.492328i \(0.163854\pi\)
−0.00883597 + 0.999961i \(0.502813\pi\)
\(12\) 0 0
\(13\) 818.732 1.34364 0.671821 0.740714i \(-0.265512\pi\)
0.671821 + 0.740714i \(0.265512\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 554.638 + 960.661i 0.465465 + 0.806209i 0.999222 0.0394286i \(-0.0125538\pi\)
−0.533757 + 0.845638i \(0.679220\pi\)
\(18\) 0 0
\(19\) 286.523 496.273i 0.182086 0.315382i −0.760505 0.649332i \(-0.775049\pi\)
0.942591 + 0.333951i \(0.108382\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1258.80 2180.30i 0.496177 0.859403i −0.503814 0.863812i \(-0.668070\pi\)
0.999990 + 0.00440926i \(0.00140352\pi\)
\(24\) 0 0
\(25\) −1532.12 2653.71i −0.490279 0.849189i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3258.19 0.719419 0.359710 0.933064i \(-0.382876\pi\)
0.359710 + 0.933064i \(0.382876\pi\)
\(30\) 0 0
\(31\) −5059.55 8763.40i −0.945601 1.63783i −0.754544 0.656249i \(-0.772142\pi\)
−0.191056 0.981579i \(-0.561191\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −9528.17 + 3638.23i −1.31474 + 0.502018i
\(36\) 0 0
\(37\) −2434.81 + 4217.21i −0.292389 + 0.506432i −0.974374 0.224934i \(-0.927783\pi\)
0.681985 + 0.731366i \(0.261117\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 13094.3 1.21653 0.608265 0.793734i \(-0.291866\pi\)
0.608265 + 0.793734i \(0.291866\pi\)
\(42\) 0 0
\(43\) −9303.64 −0.767329 −0.383664 0.923473i \(-0.625338\pi\)
−0.383664 + 0.923473i \(0.625338\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6452.90 11176.8i 0.426099 0.738025i −0.570423 0.821351i \(-0.693221\pi\)
0.996522 + 0.0833256i \(0.0265542\pi\)
\(48\) 0 0
\(49\) 3436.28 + 16452.0i 0.204455 + 0.978876i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −9770.12 16922.3i −0.477760 0.827505i 0.521915 0.852998i \(-0.325218\pi\)
−0.999675 + 0.0254926i \(0.991885\pi\)
\(54\) 0 0
\(55\) 54403.0 2.42503
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −12560.2 21755.0i −0.469751 0.813632i 0.529651 0.848216i \(-0.322323\pi\)
−0.999402 + 0.0345835i \(0.988990\pi\)
\(60\) 0 0
\(61\) 15681.1 27160.5i 0.539575 0.934571i −0.459352 0.888254i \(-0.651918\pi\)
0.998927 0.0463168i \(-0.0147484\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 32205.6 55781.7i 0.945469 1.63760i
\(66\) 0 0
\(67\) −27971.9 48448.8i −0.761264 1.31855i −0.942200 0.335052i \(-0.891246\pi\)
0.180936 0.983495i \(-0.442087\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −20501.0 −0.482647 −0.241323 0.970445i \(-0.577581\pi\)
−0.241323 + 0.970445i \(0.577581\pi\)
\(72\) 0 0
\(73\) 33825.0 + 58586.6i 0.742900 + 1.28674i 0.951170 + 0.308669i \(0.0998835\pi\)
−0.208270 + 0.978071i \(0.566783\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 14180.7 88521.1i 0.272565 1.70145i
\(78\) 0 0
\(79\) −7039.95 + 12193.5i −0.126912 + 0.219818i −0.922479 0.386048i \(-0.873840\pi\)
0.795567 + 0.605866i \(0.207173\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 77129.1 1.22892 0.614459 0.788949i \(-0.289374\pi\)
0.614459 + 0.788949i \(0.289374\pi\)
\(84\) 0 0
\(85\) 87268.6 1.31012
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 160.396 277.815i 0.00214644 0.00371775i −0.864950 0.501858i \(-0.832650\pi\)
0.867097 + 0.498140i \(0.165983\pi\)
\(90\) 0 0
\(91\) −82369.7 66942.9i −1.04271 0.847424i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −22541.3 39042.6i −0.256253 0.443844i
\(96\) 0 0
\(97\) −112009. −1.20871 −0.604355 0.796715i \(-0.706569\pi\)
−0.604355 + 0.796715i \(0.706569\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 33627.0 + 58243.7i 0.328008 + 0.568127i 0.982117 0.188274i \(-0.0602893\pi\)
−0.654108 + 0.756401i \(0.726956\pi\)
\(102\) 0 0
\(103\) 58317.6 101009.i 0.541635 0.938140i −0.457175 0.889377i \(-0.651139\pi\)
0.998810 0.0487630i \(-0.0155279\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −80322.6 + 139123.i −0.678232 + 1.17473i 0.297281 + 0.954790i \(0.403920\pi\)
−0.975513 + 0.219942i \(0.929413\pi\)
\(108\) 0 0
\(109\) −59668.3 103349.i −0.481036 0.833179i 0.518727 0.854940i \(-0.326406\pi\)
−0.999763 + 0.0217610i \(0.993073\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 110893. 0.816972 0.408486 0.912765i \(-0.366057\pi\)
0.408486 + 0.912765i \(0.366057\pi\)
\(114\) 0 0
\(115\) −99031.8 171528.i −0.698281 1.20946i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 22747.4 141998.i 0.147253 0.919210i
\(120\) 0 0
\(121\) −158574. + 274658.i −0.984618 + 1.70541i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 4779.64 0.0273603
\(126\) 0 0
\(127\) 315184. 1.73402 0.867012 0.498287i \(-0.166038\pi\)
0.867012 + 0.498287i \(0.166038\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 42832.3 74187.6i 0.218068 0.377705i −0.736149 0.676819i \(-0.763358\pi\)
0.954217 + 0.299114i \(0.0966911\pi\)
\(132\) 0 0
\(133\) −69403.3 + 26500.9i −0.340213 + 0.129907i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −16316.1 28260.3i −0.0742703 0.128640i 0.826498 0.562939i \(-0.190329\pi\)
−0.900769 + 0.434299i \(0.856996\pi\)
\(138\) 0 0
\(139\) 206590. 0.906925 0.453462 0.891275i \(-0.350189\pi\)
0.453462 + 0.891275i \(0.350189\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 283084. + 490317.i 1.15765 + 2.00510i
\(144\) 0 0
\(145\) 128164. 221986.i 0.506228 0.876812i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 241855. 418906.i 0.892463 1.54579i 0.0555495 0.998456i \(-0.482309\pi\)
0.836913 0.547335i \(-0.184358\pi\)
\(150\) 0 0
\(151\) 83610.4 + 144818.i 0.298413 + 0.516867i 0.975773 0.218785i \(-0.0702093\pi\)
−0.677360 + 0.735652i \(0.736876\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −796087. −2.66153
\(156\) 0 0
\(157\) 7054.26 + 12218.3i 0.0228403 + 0.0395606i 0.877220 0.480089i \(-0.159396\pi\)
−0.854379 + 0.519650i \(0.826062\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −304913. + 116428.i −0.927068 + 0.353991i
\(162\) 0 0
\(163\) −327188. + 566706.i −0.964558 + 1.67066i −0.253762 + 0.967267i \(0.581668\pi\)
−0.710797 + 0.703397i \(0.751665\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −182945. −0.507610 −0.253805 0.967255i \(-0.581682\pi\)
−0.253805 + 0.967255i \(0.581682\pi\)
\(168\) 0 0
\(169\) 299030. 0.805374
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −146004. + 252887.i −0.370894 + 0.642407i −0.989703 0.143134i \(-0.954282\pi\)
0.618809 + 0.785541i \(0.287615\pi\)
\(174\) 0 0
\(175\) −62837.2 + 392253.i −0.155103 + 0.968214i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 97383.8 + 168674.i 0.227172 + 0.393473i 0.956969 0.290191i \(-0.0937188\pi\)
−0.729797 + 0.683664i \(0.760385\pi\)
\(180\) 0 0
\(181\) −256634. −0.582261 −0.291130 0.956683i \(-0.594031\pi\)
−0.291130 + 0.956683i \(0.594031\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 191551. + 331776.i 0.411486 + 0.712714i
\(186\) 0 0
\(187\) −383542. + 664315.i −0.802065 + 1.38922i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −146975. + 254567.i −0.291513 + 0.504916i −0.974168 0.225825i \(-0.927492\pi\)
0.682654 + 0.730741i \(0.260825\pi\)
\(192\) 0 0
\(193\) 34565.0 + 59868.4i 0.0667950 + 0.115692i 0.897489 0.441037i \(-0.145389\pi\)
−0.830694 + 0.556730i \(0.812056\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −331748. −0.609037 −0.304518 0.952506i \(-0.598495\pi\)
−0.304518 + 0.952506i \(0.598495\pi\)
\(198\) 0 0
\(199\) −287214. 497470.i −0.514130 0.890500i −0.999866 0.0163939i \(-0.994781\pi\)
0.485735 0.874106i \(-0.338552\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −327795. 266403.i −0.558293 0.453732i
\(204\) 0 0
\(205\) 515076. 892138.i 0.856025 1.48268i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 396272. 0.627521
\(210\) 0 0
\(211\) −383999. −0.593777 −0.296889 0.954912i \(-0.595949\pi\)
−0.296889 + 0.954912i \(0.595949\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −365967. + 633873.i −0.539940 + 0.935203i
\(216\) 0 0
\(217\) −207508. + 1.29534e6i −0.299148 + 1.86739i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 454100. + 786524.i 0.625418 + 1.08326i
\(222\) 0 0
\(223\) −347165. −0.467492 −0.233746 0.972298i \(-0.575098\pi\)
−0.233746 + 0.972298i \(0.575098\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 180641. + 312879.i 0.232676 + 0.403006i 0.958595 0.284774i \(-0.0919186\pi\)
−0.725919 + 0.687780i \(0.758585\pi\)
\(228\) 0 0
\(229\) 376492. 652102.i 0.474424 0.821726i −0.525147 0.851011i \(-0.675990\pi\)
0.999571 + 0.0292852i \(0.00932309\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 357199. 618686.i 0.431042 0.746587i −0.565921 0.824460i \(-0.691479\pi\)
0.996963 + 0.0778721i \(0.0248126\pi\)
\(234\) 0 0
\(235\) −507661. 879295.i −0.599659 1.03864i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −343587. −0.389083 −0.194541 0.980894i \(-0.562322\pi\)
−0.194541 + 0.980894i \(0.562322\pi\)
\(240\) 0 0
\(241\) 38152.5 + 66082.0i 0.0423136 + 0.0732893i 0.886407 0.462908i \(-0.153194\pi\)
−0.844093 + 0.536197i \(0.819860\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.25607e6 + 413033.i 1.33690 + 0.439612i
\(246\) 0 0
\(247\) 234586. 406314.i 0.244658 0.423760i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −196249. −0.196618 −0.0983090 0.995156i \(-0.531343\pi\)
−0.0983090 + 0.995156i \(0.531343\pi\)
\(252\) 0 0
\(253\) 1.74096e6 1.70997
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −854554. + 1.48013e6i −0.807062 + 1.39787i 0.107828 + 0.994170i \(0.465610\pi\)
−0.914890 + 0.403703i \(0.867723\pi\)
\(258\) 0 0
\(259\) 589774. 225199.i 0.546306 0.208601i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −395762. 685481.i −0.352814 0.611091i 0.633928 0.773392i \(-0.281442\pi\)
−0.986741 + 0.162301i \(0.948108\pi\)
\(264\) 0 0
\(265\) −1.53726e6 −1.34473
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 579502. + 1.00373e6i 0.488286 + 0.845736i 0.999909 0.0134740i \(-0.00428905\pi\)
−0.511623 + 0.859210i \(0.670956\pi\)
\(270\) 0 0
\(271\) −111567. + 193240.i −0.0922811 + 0.159836i −0.908471 0.417949i \(-0.862749\pi\)
0.816190 + 0.577784i \(0.196083\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.05949e6 1.83509e6i 0.844823 1.46328i
\(276\) 0 0
\(277\) 234523. + 406205.i 0.183648 + 0.318087i 0.943120 0.332452i \(-0.107876\pi\)
−0.759472 + 0.650540i \(0.774543\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.51447e6 1.14418 0.572090 0.820191i \(-0.306133\pi\)
0.572090 + 0.820191i \(0.306133\pi\)
\(282\) 0 0
\(283\) 535303. + 927171.i 0.397314 + 0.688167i 0.993393 0.114758i \(-0.0366092\pi\)
−0.596080 + 0.802925i \(0.703276\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.31737e6 1.07064e6i −0.944068 0.767256i
\(288\) 0 0
\(289\) 94682.6 163995.i 0.0666846 0.115501i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.45450e6 −0.989794 −0.494897 0.868952i \(-0.664794\pi\)
−0.494897 + 0.868952i \(0.664794\pi\)
\(294\) 0 0
\(295\) −1.97627e6 −1.32218
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.03062e6 1.78508e6i 0.666684 1.15473i
\(300\) 0 0
\(301\) 936005. + 760703.i 0.595473 + 0.483948i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.23366e6 2.13676e6i −0.759356 1.31524i
\(306\) 0 0
\(307\) −2.23869e6 −1.35565 −0.677824 0.735224i \(-0.737077\pi\)
−0.677824 + 0.735224i \(0.737077\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −750695. 1.30024e6i −0.440111 0.762295i 0.557586 0.830119i \(-0.311728\pi\)
−0.997697 + 0.0678240i \(0.978394\pi\)
\(312\) 0 0
\(313\) 890067. 1.54164e6i 0.513525 0.889452i −0.486352 0.873763i \(-0.661673\pi\)
0.999877 0.0156888i \(-0.00499410\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 735500. 1.27392e6i 0.411088 0.712025i −0.583921 0.811810i \(-0.698482\pi\)
0.995009 + 0.0997854i \(0.0318156\pi\)
\(318\) 0 0
\(319\) 1.12655e6 + 1.95124e6i 0.619832 + 1.07358i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 635666. 0.339018
\(324\) 0 0
\(325\) −1.25440e6 2.17268e6i −0.658760 1.14101i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.56306e6 + 596837.i −0.796134 + 0.303995i
\(330\) 0 0
\(331\) 914873. 1.58461e6i 0.458977 0.794971i −0.539930 0.841710i \(-0.681549\pi\)
0.998907 + 0.0467386i \(0.0148828\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.40120e6 −2.14269
\(336\) 0 0
\(337\) 3.18627e6 1.52830 0.764148 0.645041i \(-0.223160\pi\)
0.764148 + 0.645041i \(0.223160\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.49878e6 6.06006e6i 1.62941 2.82222i
\(342\) 0 0
\(343\) 999468. 1.93614e6i 0.458705 0.888589i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.23895e6 + 2.14592e6i 0.552370 + 0.956732i 0.998103 + 0.0615664i \(0.0196096\pi\)
−0.445733 + 0.895166i \(0.647057\pi\)
\(348\) 0 0
\(349\) 1.81720e6 0.798618 0.399309 0.916816i \(-0.369250\pi\)
0.399309 + 0.916816i \(0.369250\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.57678e6 + 2.73106e6i 0.673493 + 1.16652i 0.976907 + 0.213666i \(0.0685403\pi\)
−0.303413 + 0.952859i \(0.598126\pi\)
\(354\) 0 0
\(355\) −806425. + 1.39677e6i −0.339620 + 0.588239i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.35105e6 2.34008e6i 0.553266 0.958285i −0.444770 0.895645i \(-0.646715\pi\)
0.998036 0.0626404i \(-0.0199521\pi\)
\(360\) 0 0
\(361\) 1.07386e6 + 1.85998e6i 0.433690 + 0.751173i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 5.32214e6 2.09100
\(366\) 0 0
\(367\) 1.80573e6 + 3.12762e6i 0.699824 + 1.21213i 0.968527 + 0.248908i \(0.0800716\pi\)
−0.268703 + 0.963223i \(0.586595\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −400703. + 2.50134e6i −0.151143 + 0.943491i
\(372\) 0 0
\(373\) 216759. 375438.i 0.0806688 0.139722i −0.822869 0.568232i \(-0.807628\pi\)
0.903537 + 0.428509i \(0.140961\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.66759e6 0.966642
\(378\) 0 0
\(379\) −2.12163e6 −0.758704 −0.379352 0.925252i \(-0.623853\pi\)
−0.379352 + 0.925252i \(0.623853\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.12339e6 + 3.67782e6i −0.739662 + 1.28113i 0.212985 + 0.977055i \(0.431681\pi\)
−0.952647 + 0.304077i \(0.901652\pi\)
\(384\) 0 0
\(385\) −5.47329e6 4.44821e6i −1.88190 1.52944i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.76088e6 3.04994e6i −0.590006 1.02192i −0.994231 0.107261i \(-0.965792\pi\)
0.404224 0.914660i \(-0.367541\pi\)
\(390\) 0 0
\(391\) 2.79271e6 0.923811
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 553845. + 959288.i 0.178606 + 0.309354i
\(396\) 0 0
\(397\) 367025. 635706.i 0.116874 0.202432i −0.801653 0.597790i \(-0.796046\pi\)
0.918527 + 0.395357i \(0.129379\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −111135. + 192492.i −0.0345136 + 0.0597793i −0.882766 0.469812i \(-0.844322\pi\)
0.848253 + 0.529592i \(0.177655\pi\)
\(402\) 0 0
\(403\) −4.14242e6 7.17488e6i −1.27055 2.20065i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.36743e6 −1.00766
\(408\) 0 0
\(409\) 1.75379e6 + 3.03765e6i 0.518405 + 0.897904i 0.999771 + 0.0213846i \(0.00680745\pi\)
−0.481366 + 0.876520i \(0.659859\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −515134. + 3.21566e6i −0.148609 + 0.927674i
\(414\) 0 0
\(415\) 3.03394e6 5.25494e6i 0.864742 1.49778i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.97040e6 0.548302 0.274151 0.961687i \(-0.411603\pi\)
0.274151 + 0.961687i \(0.411603\pi\)
\(420\) 0 0
\(421\) −7.19318e6 −1.97795 −0.988976 0.148079i \(-0.952691\pi\)
−0.988976 + 0.148079i \(0.952691\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.69955e6 2.94370e6i 0.456416 0.790535i
\(426\) 0 0
\(427\) −3.79837e6 + 1.45036e6i −1.00815 + 0.384953i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 262091. + 453955.i 0.0679608 + 0.117712i 0.898004 0.439988i \(-0.145017\pi\)
−0.830043 + 0.557700i \(0.811684\pi\)
\(432\) 0 0
\(433\) 1.49326e6 0.382750 0.191375 0.981517i \(-0.438705\pi\)
0.191375 + 0.981517i \(0.438705\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −721349. 1.24941e6i −0.180693 0.312970i
\(438\) 0 0
\(439\) −1.32835e6 + 2.30077e6i −0.328966 + 0.569786i −0.982307 0.187278i \(-0.940034\pi\)
0.653341 + 0.757064i \(0.273367\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.34399e6 + 4.05991e6i −0.567474 + 0.982895i 0.429340 + 0.903143i \(0.358746\pi\)
−0.996815 + 0.0797518i \(0.974587\pi\)
\(444\) 0 0
\(445\) −12618.7 21856.2i −0.00302074 0.00523207i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3.45899e6 0.809716 0.404858 0.914379i \(-0.367321\pi\)
0.404858 + 0.914379i \(0.367321\pi\)
\(450\) 0 0
\(451\) 4.52748e6 + 7.84182e6i 1.04813 + 1.81541i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −7.80102e6 + 2.97873e6i −1.76654 + 0.674533i
\(456\) 0 0
\(457\) −359140. + 622048.i −0.0804401 + 0.139326i −0.903439 0.428717i \(-0.858966\pi\)
0.822999 + 0.568043i \(0.192299\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −5.07998e6 −1.11329 −0.556647 0.830749i \(-0.687912\pi\)
−0.556647 + 0.830749i \(0.687912\pi\)
\(462\) 0 0
\(463\) 3.40607e6 0.738416 0.369208 0.929347i \(-0.379629\pi\)
0.369208 + 0.929347i \(0.379629\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 921342. 1.59581e6i 0.195492 0.338602i −0.751570 0.659654i \(-0.770703\pi\)
0.947062 + 0.321052i \(0.104036\pi\)
\(468\) 0 0
\(469\) −1.14722e6 + 7.16135e6i −0.240831 + 1.50336i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.21682e6 5.57170e6i −0.661110 1.14508i
\(474\) 0 0
\(475\) −1.75595e6 −0.357091
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.55714e6 + 7.89319e6i 0.907514 + 1.57186i 0.817507 + 0.575919i \(0.195356\pi\)
0.0900071 + 0.995941i \(0.471311\pi\)
\(480\) 0 0
\(481\) −1.99346e6 + 3.45277e6i −0.392866 + 0.680464i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.40596e6 + 7.63134e6i −0.850523 + 1.47315i
\(486\) 0 0
\(487\) −2.19220e6 3.79701e6i −0.418850 0.725469i 0.576974 0.816762i \(-0.304233\pi\)
−0.995824 + 0.0912933i \(0.970900\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9.50592e6 1.77947 0.889735 0.456478i \(-0.150889\pi\)
0.889735 + 0.456478i \(0.150889\pi\)
\(492\) 0 0
\(493\) 1.80712e6 + 3.13002e6i 0.334864 + 0.580002i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.06253e6 + 1.67625e6i 0.374550 + 0.304401i
\(498\) 0 0
\(499\) −1.68783e6 + 2.92341e6i −0.303444 + 0.525580i −0.976914 0.213635i \(-0.931470\pi\)
0.673470 + 0.739215i \(0.264803\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −7.82645e6 −1.37926 −0.689628 0.724164i \(-0.742226\pi\)
−0.689628 + 0.724164i \(0.742226\pi\)
\(504\) 0 0
\(505\) 5.29099e6 0.923227
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3.71219e6 + 6.42969e6i −0.635090 + 1.10001i 0.351406 + 0.936223i \(0.385704\pi\)
−0.986496 + 0.163785i \(0.947630\pi\)
\(510\) 0 0
\(511\) 1.38727e6 8.65985e6i 0.235022 1.46709i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4.58795e6 7.94656e6i −0.762256 1.32027i
\(516\) 0 0
\(517\) 8.92461e6 1.46846
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −530710. 919217.i −0.0856570 0.148362i 0.820014 0.572344i \(-0.193966\pi\)
−0.905671 + 0.423981i \(0.860632\pi\)
\(522\) 0 0
\(523\) 956760. 1.65716e6i 0.152950 0.264917i −0.779361 0.626575i \(-0.784456\pi\)
0.932311 + 0.361659i \(0.117789\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.61243e6 9.72102e6i 0.880288 1.52470i
\(528\) 0 0
\(529\) 49029.1 + 84921.0i 0.00761755 + 0.0131940i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.07207e7 1.63458
\(534\) 0 0
\(535\) 6.31912e6 + 1.09450e7i 0.954492 + 1.65323i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −8.66451e6 + 7.74632e6i −1.28461 + 1.14848i
\(540\) 0 0
\(541\) −5.83140e6 + 1.01003e7i −0.856603 + 1.48368i 0.0185472 + 0.999828i \(0.494096\pi\)
−0.875150 + 0.483852i \(0.839237\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −9.38842e6 −1.35395
\(546\) 0 0
\(547\) −6.36659e6 −0.909785 −0.454893 0.890546i \(-0.650322\pi\)
−0.454893 + 0.890546i \(0.650322\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 933548. 1.61695e6i 0.130996 0.226891i
\(552\) 0 0
\(553\) 1.70526e6 651134.i 0.237125 0.0905435i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.86221e6 + 8.42159e6i 0.664042 + 1.15015i 0.979544 + 0.201230i \(0.0644937\pi\)
−0.315502 + 0.948925i \(0.602173\pi\)
\(558\) 0 0
\(559\) −7.61719e6 −1.03102
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3.15133e6 + 5.45826e6i 0.419008 + 0.725744i 0.995840 0.0911193i \(-0.0290445\pi\)
−0.576832 + 0.816863i \(0.695711\pi\)
\(564\) 0 0
\(565\) 4.36207e6 7.55532e6i 0.574872 0.995708i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4.08244e6 7.07099e6i 0.528614 0.915586i −0.470829 0.882224i \(-0.656045\pi\)
0.999443 0.0333620i \(-0.0106214\pi\)
\(570\) 0 0
\(571\) 6.43857e6 + 1.11519e7i 0.826416 + 1.43139i 0.900832 + 0.434168i \(0.142957\pi\)
−0.0744158 + 0.997227i \(0.523709\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −7.71453e6 −0.973061
\(576\) 0 0
\(577\) −5.70887e6 9.88805e6i −0.713856 1.23643i −0.963399 0.268071i \(-0.913614\pi\)
0.249543 0.968364i \(-0.419720\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7.75968e6 6.30639e6i −0.953681 0.775069i
\(582\) 0 0
\(583\) 6.75622e6 1.17021e7i 0.823251 1.42591i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.12781e6 −0.254882 −0.127441 0.991846i \(-0.540676\pi\)
−0.127441 + 0.991846i \(0.540676\pi\)
\(588\) 0 0
\(589\) −5.79871e6 −0.688721
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −4.28689e6 + 7.42511e6i −0.500617 + 0.867094i 0.499383 + 0.866382i \(0.333560\pi\)
−1.00000 0.000712836i \(0.999773\pi\)
\(594\) 0 0
\(595\) −8.77978e6 7.13544e6i −1.01670 0.826282i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5.64372e6 + 9.77521e6i 0.642686 + 1.11316i 0.984831 + 0.173517i \(0.0555131\pi\)
−0.342145 + 0.939647i \(0.611154\pi\)
\(600\) 0 0
\(601\) −1.58260e7 −1.78725 −0.893625 0.448814i \(-0.851847\pi\)
−0.893625 + 0.448814i \(0.851847\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.24753e7 + 2.16078e7i 1.38568 + 2.40006i
\(606\) 0 0
\(607\) −4.87183e6 + 8.43826e6i −0.536686 + 0.929568i 0.462393 + 0.886675i \(0.346991\pi\)
−0.999080 + 0.0428932i \(0.986342\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.28320e6 9.15077e6i 0.572525 0.991642i
\(612\) 0 0
\(613\) −3.07524e6 5.32647e6i −0.330543 0.572517i 0.652075 0.758154i \(-0.273899\pi\)
−0.982618 + 0.185637i \(0.940565\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.36084e6 0.355414 0.177707 0.984083i \(-0.443132\pi\)
0.177707 + 0.984083i \(0.443132\pi\)
\(618\) 0 0
\(619\) −3.44329e6 5.96396e6i −0.361200 0.625616i 0.626959 0.779052i \(-0.284299\pi\)
−0.988159 + 0.153436i \(0.950966\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −38852.1 + 14835.3i −0.00401046 + 0.00153135i
\(624\) 0 0
\(625\) 4.97590e6 8.61850e6i 0.509532 0.882535i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5.40175e6 −0.544387
\(630\) 0 0
\(631\) 3.59545e6 0.359484 0.179742 0.983714i \(-0.442474\pi\)
0.179742 + 0.983714i \(0.442474\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.23980e7 2.14740e7i 1.22017 2.11339i
\(636\) 0 0
\(637\) 2.81339e6 + 1.34698e7i 0.274715 + 1.31526i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −9.91433e6 1.71721e7i −0.953056 1.65074i −0.738756 0.673973i \(-0.764587\pi\)
−0.214299 0.976768i \(-0.568747\pi\)
\(642\) 0 0
\(643\) −8.10851e6 −0.773417 −0.386708 0.922202i \(-0.626388\pi\)
−0.386708 + 0.922202i \(0.626388\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.01373e6 + 1.75583e6i 0.0952053 + 0.164900i 0.909694 0.415279i \(-0.136316\pi\)
−0.814489 + 0.580179i \(0.802983\pi\)
\(648\) 0 0
\(649\) 8.68564e6 1.50440e7i 0.809450 1.40201i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 757133. 1.31139e6i 0.0694847 0.120351i −0.829190 0.558967i \(-0.811198\pi\)
0.898675 + 0.438616i \(0.144531\pi\)
\(654\) 0 0
\(655\) −3.36969e6 5.83647e6i −0.306893 0.531554i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.22358e6 0.289151 0.144576 0.989494i \(-0.453818\pi\)
0.144576 + 0.989494i \(0.453818\pi\)
\(660\) 0 0
\(661\) 7.19538e6 + 1.24628e7i 0.640546 + 1.10946i 0.985311 + 0.170769i \(0.0546253\pi\)
−0.344765 + 0.938689i \(0.612041\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −924488. + 5.77100e6i −0.0810676 + 0.506054i
\(666\) 0 0
\(667\) 4.10141e6 7.10384e6i 0.356959 0.618271i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.16875e7 1.85953
\(672\) 0 0
\(673\) 7.33478e6 0.624237 0.312118 0.950043i \(-0.398961\pi\)
0.312118 + 0.950043i \(0.398961\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.52642e6 + 2.64384e6i −0.127998 + 0.221699i −0.922901 0.385038i \(-0.874188\pi\)
0.794903 + 0.606737i \(0.207522\pi\)
\(678\) 0 0
\(679\) 1.12688e7 + 9.15828e6i 0.937999 + 0.762324i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.98793e6 + 1.38355e7i 0.655213 + 1.13486i 0.981840 + 0.189709i \(0.0607546\pi\)
−0.326627 + 0.945153i \(0.605912\pi\)
\(684\) 0 0
\(685\) −2.56724e6 −0.209045
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −7.99911e6 1.38549e7i −0.641939 1.11187i
\(690\) 0 0
\(691\) 1.23267e6 2.13504e6i 0.0982087 0.170103i −0.812735 0.582634i \(-0.802022\pi\)
0.910943 + 0.412532i \(0.135355\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.12638e6 1.40753e7i 0.638168 1.10534i
\(696\) 0 0
\(697\) 7.26259e6 + 1.25792e7i 0.566252 + 0.980777i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.74893e7 −1.34424 −0.672122 0.740440i \(-0.734617\pi\)
−0.672122 + 0.740440i \(0.734617\pi\)
\(702\) 0 0
\(703\) 1.39526e6 + 2.41666e6i 0.106480 + 0.184428i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.37915e6 8.60916e6i 0.103768 0.647757i
\(708\) 0 0
\(709\) 1.09216e7 1.89167e7i 0.815961 1.41329i −0.0926752 0.995696i \(-0.529542\pi\)
0.908636 0.417589i \(-0.137125\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.54758e7 −1.87674
\(714\) 0 0
\(715\) 4.45415e7 3.25837
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 9.55868e6 1.65561e7i 0.689566 1.19436i −0.282413 0.959293i \(-0.591135\pi\)
0.971978 0.235070i \(-0.0755319\pi\)
\(720\) 0 0
\(721\) −1.41260e7 + 5.39387e6i −1.01200 + 0.386423i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.99195e6 8.64632e6i −0.352716 0.610923i
\(726\) 0 0
\(727\) −4.08900e6 −0.286933 −0.143467 0.989655i \(-0.545825\pi\)
−0.143467 + 0.989655i \(0.545825\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.16015e6 8.93764e6i −0.357165 0.618628i
\(732\) 0 0
\(733\) 1.81634e6 3.14599e6i 0.124864 0.216271i −0.796816 0.604222i \(-0.793484\pi\)
0.921680 + 0.387952i \(0.126817\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.93431e7 3.35032e7i 1.31177 2.27205i
\(738\) 0 0
\(739\) −1.08978e6 1.88756e6i −0.0734056 0.127142i 0.826986 0.562222i \(-0.190053\pi\)
−0.900392 + 0.435080i \(0.856720\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.21595e7 −0.808060 −0.404030 0.914746i \(-0.632391\pi\)
−0.404030 + 0.914746i \(0.632391\pi\)
\(744\) 0 0
\(745\) −1.90272e7 3.29561e7i −1.25598 2.17543i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.94562e7 7.42914e6i 1.26722 0.483876i
\(750\) 0 0
\(751\) −1.16248e7 + 2.01347e7i −0.752115 + 1.30270i 0.194681 + 0.980867i \(0.437633\pi\)
−0.946796 + 0.321835i \(0.895701\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.31556e7 0.839928
\(756\) 0 0
\(757\) −1.49939e7 −0.950985 −0.475492 0.879720i \(-0.657730\pi\)
−0.475492 + 0.879720i \(0.657730\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6.36596e6 + 1.10262e7i −0.398476 + 0.690181i −0.993538 0.113499i \(-0.963794\pi\)
0.595062 + 0.803680i \(0.297127\pi\)
\(762\) 0 0
\(763\) −2.44719e6 + 1.52762e7i −0.152179 + 0.949960i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.02835e7 1.78115e7i −0.631177 1.09323i
\(768\) 0 0
\(769\) 2.34653e6 0.143090 0.0715451 0.997437i \(-0.477207\pi\)
0.0715451 + 0.997437i \(0.477207\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.35931e7 + 2.35440e7i 0.818222 + 1.41720i 0.906991 + 0.421150i \(0.138373\pi\)
−0.0887694 + 0.996052i \(0.528293\pi\)
\(774\) 0 0
\(775\) −1.55037e7 + 2.68532e7i −0.927217 + 1.60599i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.75182e6 6.49834e6i 0.221513 0.383671i
\(780\) 0 0
\(781\) −7.08842e6 1.22775e7i −0.415836 0.720249i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.10994e6 0.0642874
\(786\) 0 0
\(787\) −2.15137e6 3.72628e6i −0.123816 0.214456i 0.797453 0.603381i \(-0.206180\pi\)
−0.921270 + 0.388925i \(0.872847\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.11565e7 9.06705e6i −0.633998 0.515258