Properties

Label 252.6.k.e.37.1
Level $252$
Weight $6$
Character 252.37
Analytic conductor $40.417$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,6,Mod(37,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.37");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 252.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.4167225929\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7081})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 1771x^{2} + 1770x + 3132900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.1
Root \(21.2872 - 36.8705i\) of defining polynomial
Character \(\chi\) \(=\) 252.37
Dual form 252.6.k.e.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-9.28717 + 16.0858i) q^{5} +(-127.649 + 22.6454i) q^{7} +(-80.7128 - 139.799i) q^{11} +14.1283 q^{13} +(-382.851 - 663.118i) q^{17} +(-707.146 + 1224.81i) q^{19} +(2092.72 - 3624.69i) q^{23} +(1390.00 + 2407.55i) q^{25} +4202.60 q^{29} +(1193.68 + 2067.51i) q^{31} +(821.224 - 2263.65i) q^{35} +(336.469 - 582.782i) q^{37} +4173.45 q^{41} -5430.94 q^{43} +(3151.34 - 5458.28i) q^{47} +(15781.4 - 5781.32i) q^{49} +(8208.34 + 14217.3i) q^{53} +2998.37 q^{55} +(1983.24 + 3435.08i) q^{59} +(25169.4 - 43594.6i) q^{61} +(-131.212 + 227.266i) q^{65} +(-6822.63 - 11817.1i) q^{67} +83957.2 q^{71} +(14289.2 + 24749.6i) q^{73} +(13468.7 + 16017.3i) q^{77} +(29977.7 - 51923.0i) q^{79} +61583.0 q^{83} +14222.4 q^{85} +(21149.2 - 36631.4i) q^{89} +(-1803.46 + 319.941i) q^{91} +(-13134.8 - 22750.1i) q^{95} +44638.1 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 47 q^{5} - 174 q^{7} - 407 q^{11} + 898 q^{13} - 1868 q^{17} + 1463 q^{19} - 44 q^{23} + 1605 q^{25} - 1534 q^{29} + 11170 q^{31} - 9674 q^{35} + 3113 q^{37} + 15684 q^{41} - 25258 q^{43} + 9576 q^{47}+ \cdots + 369570 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −9.28717 + 16.0858i −0.166134 + 0.287752i −0.937057 0.349175i \(-0.886462\pi\)
0.770923 + 0.636928i \(0.219795\pi\)
\(6\) 0 0
\(7\) −127.649 + 22.6454i −0.984626 + 0.174677i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −80.7128 139.799i −0.201123 0.348355i 0.747768 0.663960i \(-0.231126\pi\)
−0.948890 + 0.315606i \(0.897792\pi\)
\(12\) 0 0
\(13\) 14.1283 0.0231863 0.0115932 0.999933i \(-0.496310\pi\)
0.0115932 + 0.999933i \(0.496310\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −382.851 663.118i −0.321298 0.556504i 0.659458 0.751741i \(-0.270786\pi\)
−0.980756 + 0.195237i \(0.937452\pi\)
\(18\) 0 0
\(19\) −707.146 + 1224.81i −0.449392 + 0.778369i −0.998346 0.0574830i \(-0.981693\pi\)
0.548955 + 0.835852i \(0.315026\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2092.72 3624.69i 0.824880 1.42873i −0.0771305 0.997021i \(-0.524576\pi\)
0.902011 0.431713i \(-0.142091\pi\)
\(24\) 0 0
\(25\) 1390.00 + 2407.55i 0.444799 + 0.770415i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4202.60 0.927947 0.463974 0.885849i \(-0.346423\pi\)
0.463974 + 0.885849i \(0.346423\pi\)
\(30\) 0 0
\(31\) 1193.68 + 2067.51i 0.223091 + 0.386405i 0.955745 0.294196i \(-0.0950520\pi\)
−0.732654 + 0.680601i \(0.761719\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 821.224 2263.65i 0.113316 0.312348i
\(36\) 0 0
\(37\) 336.469 582.782i 0.0404056 0.0699845i −0.845115 0.534584i \(-0.820468\pi\)
0.885521 + 0.464599i \(0.153802\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4173.45 0.387735 0.193868 0.981028i \(-0.437897\pi\)
0.193868 + 0.981028i \(0.437897\pi\)
\(42\) 0 0
\(43\) −5430.94 −0.447923 −0.223962 0.974598i \(-0.571899\pi\)
−0.223962 + 0.974598i \(0.571899\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3151.34 5458.28i 0.208090 0.360422i −0.743023 0.669266i \(-0.766609\pi\)
0.951113 + 0.308844i \(0.0999421\pi\)
\(48\) 0 0
\(49\) 15781.4 5781.32i 0.938976 0.343983i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8208.34 + 14217.3i 0.401389 + 0.695226i 0.993894 0.110341i \(-0.0351942\pi\)
−0.592505 + 0.805567i \(0.701861\pi\)
\(54\) 0 0
\(55\) 2998.37 0.133653
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1983.24 + 3435.08i 0.0741731 + 0.128472i 0.900726 0.434387i \(-0.143035\pi\)
−0.826553 + 0.562858i \(0.809702\pi\)
\(60\) 0 0
\(61\) 25169.4 43594.6i 0.866059 1.50006i 6.72450e−5 1.00000i \(-0.499979\pi\)
0.865992 0.500058i \(-0.166688\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −131.212 + 227.266i −0.00385203 + 0.00667192i
\(66\) 0 0
\(67\) −6822.63 11817.1i −0.185680 0.321607i 0.758126 0.652109i \(-0.226115\pi\)
−0.943805 + 0.330502i \(0.892782\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 83957.2 1.97657 0.988284 0.152624i \(-0.0487723\pi\)
0.988284 + 0.152624i \(0.0487723\pi\)
\(72\) 0 0
\(73\) 14289.2 + 24749.6i 0.313834 + 0.543576i 0.979189 0.202951i \(-0.0650532\pi\)
−0.665355 + 0.746527i \(0.731720\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 13468.7 + 16017.3i 0.258880 + 0.307867i
\(78\) 0 0
\(79\) 29977.7 51923.0i 0.540420 0.936034i −0.458460 0.888715i \(-0.651599\pi\)
0.998880 0.0473193i \(-0.0150678\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 61583.0 0.981219 0.490610 0.871380i \(-0.336774\pi\)
0.490610 + 0.871380i \(0.336774\pi\)
\(84\) 0 0
\(85\) 14222.4 0.213514
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 21149.2 36631.4i 0.283021 0.490206i −0.689107 0.724660i \(-0.741997\pi\)
0.972127 + 0.234454i \(0.0753301\pi\)
\(90\) 0 0
\(91\) −1803.46 + 319.941i −0.0228298 + 0.00405011i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −13134.8 22750.1i −0.149318 0.258627i
\(96\) 0 0
\(97\) 44638.1 0.481700 0.240850 0.970562i \(-0.422574\pi\)
0.240850 + 0.970562i \(0.422574\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −55962.2 96929.4i −0.545873 0.945480i −0.998551 0.0538058i \(-0.982865\pi\)
0.452678 0.891674i \(-0.350469\pi\)
\(102\) 0 0
\(103\) −83474.6 + 144582.i −0.775285 + 1.34283i 0.159350 + 0.987222i \(0.449060\pi\)
−0.934634 + 0.355610i \(0.884273\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 51492.8 89188.2i 0.434798 0.753092i −0.562481 0.826810i \(-0.690153\pi\)
0.997279 + 0.0737182i \(0.0234865\pi\)
\(108\) 0 0
\(109\) 68910.6 + 119357.i 0.555546 + 0.962233i 0.997861 + 0.0653736i \(0.0208239\pi\)
−0.442315 + 0.896860i \(0.645843\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 129967. 0.957495 0.478748 0.877953i \(-0.341091\pi\)
0.478748 + 0.877953i \(0.341091\pi\)
\(114\) 0 0
\(115\) 38870.8 + 67326.3i 0.274081 + 0.474723i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 63887.0 + 75976.3i 0.413567 + 0.491825i
\(120\) 0 0
\(121\) 67496.4 116907.i 0.419099 0.725901i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −109681. −0.627853
\(126\) 0 0
\(127\) −243265. −1.33835 −0.669177 0.743103i \(-0.733353\pi\)
−0.669177 + 0.743103i \(0.733353\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 97167.8 168300.i 0.494703 0.856850i −0.505279 0.862956i \(-0.668610\pi\)
0.999981 + 0.00610601i \(0.00194361\pi\)
\(132\) 0 0
\(133\) 62529.8 172359.i 0.306519 0.844900i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1546.85 2679.22i −0.00704121 0.0121957i 0.862483 0.506085i \(-0.168908\pi\)
−0.869525 + 0.493890i \(0.835575\pi\)
\(138\) 0 0
\(139\) 22600.4 0.0992155 0.0496078 0.998769i \(-0.484203\pi\)
0.0496078 + 0.998769i \(0.484203\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1140.34 1975.12i −0.00466329 0.00807706i
\(144\) 0 0
\(145\) −39030.3 + 67602.4i −0.154164 + 0.267019i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −176397. + 305529.i −0.650917 + 1.12742i 0.331983 + 0.943285i \(0.392282\pi\)
−0.982901 + 0.184137i \(0.941051\pi\)
\(150\) 0 0
\(151\) −72548.2 125657.i −0.258931 0.448482i 0.707025 0.707189i \(-0.250037\pi\)
−0.965956 + 0.258707i \(0.916704\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −44343.5 −0.148252
\(156\) 0 0
\(157\) 108948. + 188703.i 0.352751 + 0.610983i 0.986730 0.162367i \(-0.0519128\pi\)
−0.633979 + 0.773350i \(0.718579\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −185050. + 510078.i −0.562632 + 1.55086i
\(162\) 0 0
\(163\) 161055. 278956.i 0.474795 0.822370i −0.524788 0.851233i \(-0.675855\pi\)
0.999583 + 0.0288633i \(0.00918874\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −707392. −1.96277 −0.981384 0.192056i \(-0.938485\pi\)
−0.981384 + 0.192056i \(0.938485\pi\)
\(168\) 0 0
\(169\) −371093. −0.999462
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −85253.7 + 147664.i −0.216570 + 0.375110i −0.953757 0.300579i \(-0.902820\pi\)
0.737187 + 0.675689i \(0.236154\pi\)
\(174\) 0 0
\(175\) −231951. 275843.i −0.572534 0.680874i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −207703. 359752.i −0.484519 0.839211i 0.515323 0.856996i \(-0.327672\pi\)
−0.999842 + 0.0177851i \(0.994339\pi\)
\(180\) 0 0
\(181\) −1162.38 −0.00263726 −0.00131863 0.999999i \(-0.500420\pi\)
−0.00131863 + 0.999999i \(0.500420\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6249.70 + 10824.8i 0.0134255 + 0.0232536i
\(186\) 0 0
\(187\) −61802.0 + 107044.i −0.129241 + 0.223851i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −372807. + 645721.i −0.739436 + 1.28074i 0.213313 + 0.976984i \(0.431575\pi\)
−0.952749 + 0.303757i \(0.901759\pi\)
\(192\) 0 0
\(193\) 99186.5 + 171796.i 0.191672 + 0.331986i 0.945805 0.324737i \(-0.105276\pi\)
−0.754132 + 0.656722i \(0.771942\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 469368. 0.861684 0.430842 0.902427i \(-0.358217\pi\)
0.430842 + 0.902427i \(0.358217\pi\)
\(198\) 0 0
\(199\) 96796.7 + 167657.i 0.173272 + 0.300116i 0.939562 0.342379i \(-0.111233\pi\)
−0.766290 + 0.642495i \(0.777899\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −536457. + 95169.7i −0.913681 + 0.162091i
\(204\) 0 0
\(205\) −38759.5 + 67133.4i −0.0644160 + 0.111572i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 228303. 0.361531
\(210\) 0 0
\(211\) −298066. −0.460900 −0.230450 0.973084i \(-0.574020\pi\)
−0.230450 + 0.973084i \(0.574020\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 50438.0 87361.3i 0.0744153 0.128891i
\(216\) 0 0
\(217\) −199191. 236883.i −0.287157 0.341495i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −5409.04 9368.73i −0.00744971 0.0129033i
\(222\) 0 0
\(223\) −187215. −0.252103 −0.126051 0.992024i \(-0.540230\pi\)
−0.126051 + 0.992024i \(0.540230\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −669482. 1.15958e6i −0.862332 1.49360i −0.869672 0.493630i \(-0.835670\pi\)
0.00734045 0.999973i \(-0.497663\pi\)
\(228\) 0 0
\(229\) −475828. + 824158.i −0.599600 + 1.03854i 0.393280 + 0.919419i \(0.371340\pi\)
−0.992880 + 0.119119i \(0.961993\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 371709. 643820.i 0.448553 0.776917i −0.549739 0.835336i \(-0.685273\pi\)
0.998292 + 0.0584197i \(0.0186062\pi\)
\(234\) 0 0
\(235\) 58534.0 + 101384.i 0.0691415 + 0.119757i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 625847. 0.708718 0.354359 0.935110i \(-0.384699\pi\)
0.354359 + 0.935110i \(0.384699\pi\)
\(240\) 0 0
\(241\) 666411. + 1.15426e6i 0.739094 + 1.28015i 0.952904 + 0.303273i \(0.0980793\pi\)
−0.213810 + 0.976875i \(0.568587\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −53566.9 + 307549.i −0.0570140 + 0.327340i
\(246\) 0 0
\(247\) −9990.77 + 17304.5i −0.0104197 + 0.0180475i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.78809e6 −1.79145 −0.895726 0.444606i \(-0.853344\pi\)
−0.895726 + 0.444606i \(0.853344\pi\)
\(252\) 0 0
\(253\) −675636. −0.663608
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 254462. 440741.i 0.240320 0.416247i −0.720485 0.693470i \(-0.756081\pi\)
0.960805 + 0.277224i \(0.0894142\pi\)
\(258\) 0 0
\(259\) −29752.5 + 82010.9i −0.0275597 + 0.0759665i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −168247. 291412.i −0.149988 0.259787i 0.781235 0.624237i \(-0.214590\pi\)
−0.931223 + 0.364450i \(0.881257\pi\)
\(264\) 0 0
\(265\) −304929. −0.266737
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 747765. + 1.29517e6i 0.630064 + 1.09130i 0.987538 + 0.157379i \(0.0503045\pi\)
−0.357475 + 0.933923i \(0.616362\pi\)
\(270\) 0 0
\(271\) 888484. 1.53890e6i 0.734897 1.27288i −0.219871 0.975529i \(-0.570564\pi\)
0.954768 0.297350i \(-0.0961029\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 224381. 388640.i 0.178918 0.309896i
\(276\) 0 0
\(277\) −440632. 763198.i −0.345046 0.597637i 0.640316 0.768112i \(-0.278803\pi\)
−0.985362 + 0.170474i \(0.945470\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.13932e6 0.860756 0.430378 0.902649i \(-0.358380\pi\)
0.430378 + 0.902649i \(0.358380\pi\)
\(282\) 0 0
\(283\) 448733. + 777228.i 0.333059 + 0.576876i 0.983110 0.183015i \(-0.0585857\pi\)
−0.650051 + 0.759891i \(0.725252\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −532735. + 94509.4i −0.381774 + 0.0677283i
\(288\) 0 0
\(289\) 416778. 721881.i 0.293535 0.508418i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.84614e6 1.25631 0.628153 0.778090i \(-0.283811\pi\)
0.628153 + 0.778090i \(0.283811\pi\)
\(294\) 0 0
\(295\) −73674.9 −0.0492907
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 29566.5 51210.8i 0.0191259 0.0331271i
\(300\) 0 0
\(301\) 693252. 122986.i 0.441037 0.0782418i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 467504. + 809741.i 0.287764 + 0.498421i
\(306\) 0 0
\(307\) 1.38565e6 0.839089 0.419544 0.907735i \(-0.362190\pi\)
0.419544 + 0.907735i \(0.362190\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.15624e6 + 2.00267e6i 0.677871 + 1.17411i 0.975621 + 0.219463i \(0.0704305\pi\)
−0.297750 + 0.954644i \(0.596236\pi\)
\(312\) 0 0
\(313\) 584400. 1.01221e6i 0.337171 0.583996i −0.646729 0.762720i \(-0.723863\pi\)
0.983899 + 0.178724i \(0.0571968\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 717166. 1.24217e6i 0.400840 0.694276i −0.592987 0.805212i \(-0.702052\pi\)
0.993828 + 0.110936i \(0.0353849\pi\)
\(318\) 0 0
\(319\) −339204. 587519.i −0.186631 0.323255i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.08293e6 0.577554
\(324\) 0 0
\(325\) 19638.3 + 34014.5i 0.0103132 + 0.0178631i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −278659. + 768105.i −0.141933 + 0.391229i
\(330\) 0 0
\(331\) 1.11709e6 1.93486e6i 0.560426 0.970686i −0.437033 0.899445i \(-0.643971\pi\)
0.997459 0.0712406i \(-0.0226958\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 253452. 0.123391
\(336\) 0 0
\(337\) 3.08787e6 1.48110 0.740549 0.672002i \(-0.234565\pi\)
0.740549 + 0.672002i \(0.234565\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 192690. 333749.i 0.0897373 0.155429i
\(342\) 0 0
\(343\) −1.88355e6 + 1.09535e6i −0.864454 + 0.502711i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.55877e6 2.69987e6i −0.694959 1.20370i −0.970195 0.242327i \(-0.922089\pi\)
0.275236 0.961377i \(-0.411244\pi\)
\(348\) 0 0
\(349\) 613026. 0.269411 0.134706 0.990886i \(-0.456991\pi\)
0.134706 + 0.990886i \(0.456991\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.89185e6 + 3.27678e6i 0.808071 + 1.39962i 0.914198 + 0.405268i \(0.132822\pi\)
−0.106127 + 0.994353i \(0.533845\pi\)
\(354\) 0 0
\(355\) −779724. + 1.35052e6i −0.328375 + 0.568762i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.86107e6 3.22346e6i 0.762125 1.32004i −0.179629 0.983734i \(-0.557490\pi\)
0.941753 0.336304i \(-0.109177\pi\)
\(360\) 0 0
\(361\) 237940. + 412123.i 0.0960945 + 0.166441i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −530824. −0.208554
\(366\) 0 0
\(367\) −2.06898e6 3.58357e6i −0.801845 1.38884i −0.918400 0.395652i \(-0.870519\pi\)
0.116555 0.993184i \(-0.462815\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.36974e6 1.62893e6i −0.516658 0.614424i
\(372\) 0 0
\(373\) −1.47209e6 + 2.54973e6i −0.547851 + 0.948905i 0.450571 + 0.892741i \(0.351220\pi\)
−0.998422 + 0.0561644i \(0.982113\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 59375.7 0.0215157
\(378\) 0 0
\(379\) 2.97504e6 1.06388 0.531942 0.846781i \(-0.321462\pi\)
0.531942 + 0.846781i \(0.321462\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.03052e6 1.78491e6i 0.358971 0.621756i −0.628818 0.777552i \(-0.716461\pi\)
0.987789 + 0.155796i \(0.0497944\pi\)
\(384\) 0 0
\(385\) −382739. + 67899.5i −0.131598 + 0.0233461i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.04542e6 + 1.81072e6i 0.350281 + 0.606705i 0.986299 0.164970i \(-0.0527527\pi\)
−0.636018 + 0.771675i \(0.719419\pi\)
\(390\) 0 0
\(391\) −3.20480e6 −1.06013
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 556817. + 964435.i 0.179564 + 0.311014i
\(396\) 0 0
\(397\) −585647. + 1.01437e6i −0.186492 + 0.323013i −0.944078 0.329722i \(-0.893045\pi\)
0.757586 + 0.652735i \(0.226378\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.54574e6 2.67731e6i 0.480039 0.831452i −0.519699 0.854349i \(-0.673956\pi\)
0.999738 + 0.0228979i \(0.00728925\pi\)
\(402\) 0 0
\(403\) 16864.6 + 29210.4i 0.00517266 + 0.00895930i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −108630. −0.0325059
\(408\) 0 0
\(409\) 2.17426e6 + 3.76593e6i 0.642693 + 1.11318i 0.984829 + 0.173527i \(0.0555163\pi\)
−0.342136 + 0.939650i \(0.611150\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −330947. 393572.i −0.0954737 0.113540i
\(414\) 0 0
\(415\) −571932. + 990616.i −0.163014 + 0.282348i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.13660e6 −0.872818 −0.436409 0.899748i \(-0.643750\pi\)
−0.436409 + 0.899748i \(0.643750\pi\)
\(420\) 0 0
\(421\) 6.02560e6 1.65690 0.828448 0.560066i \(-0.189224\pi\)
0.828448 + 0.560066i \(0.189224\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.06432e6 1.84346e6i 0.285826 0.495065i
\(426\) 0 0
\(427\) −2.22562e6 + 6.13476e6i −0.590719 + 1.62828i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.14931e6 1.99067e6i −0.298020 0.516186i 0.677663 0.735373i \(-0.262993\pi\)
−0.975683 + 0.219187i \(0.929660\pi\)
\(432\) 0 0
\(433\) −5.62982e6 −1.44303 −0.721515 0.692399i \(-0.756554\pi\)
−0.721515 + 0.692399i \(0.756554\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.95971e6 + 5.12637e6i 0.741388 + 1.28412i
\(438\) 0 0
\(439\) 2.72482e6 4.71952e6i 0.674801 1.16879i −0.301725 0.953395i \(-0.597563\pi\)
0.976527 0.215396i \(-0.0691041\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.85467e6 4.94443e6i 0.691108 1.19703i −0.280367 0.959893i \(-0.590456\pi\)
0.971475 0.237142i \(-0.0762105\pi\)
\(444\) 0 0
\(445\) 392832. + 680405.i 0.0940387 + 0.162880i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5.38234e6 −1.25996 −0.629978 0.776613i \(-0.716936\pi\)
−0.629978 + 0.776613i \(0.716936\pi\)
\(450\) 0 0
\(451\) −336851. 583442.i −0.0779823 0.135069i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 11602.5 31981.5i 0.00262738 0.00724220i
\(456\) 0 0
\(457\) 3.19525e6 5.53434e6i 0.715673 1.23958i −0.247026 0.969009i \(-0.579453\pi\)
0.962699 0.270573i \(-0.0872133\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −7.34511e6 −1.60970 −0.804851 0.593476i \(-0.797755\pi\)
−0.804851 + 0.593476i \(0.797755\pi\)
\(462\) 0 0
\(463\) −4.63416e6 −1.00466 −0.502329 0.864677i \(-0.667523\pi\)
−0.502329 + 0.864677i \(0.667523\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3.81598e6 + 6.60946e6i −0.809680 + 1.40241i 0.103406 + 0.994639i \(0.467026\pi\)
−0.913086 + 0.407768i \(0.866307\pi\)
\(468\) 0 0
\(469\) 1.13850e6 + 1.35394e6i 0.239002 + 0.284229i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 438346. + 759238.i 0.0900875 + 0.156036i
\(474\) 0 0
\(475\) −3.93172e6 −0.799556
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.80631e6 + 8.32477e6i 0.957135 + 1.65781i 0.729406 + 0.684081i \(0.239796\pi\)
0.227728 + 0.973725i \(0.426870\pi\)
\(480\) 0 0
\(481\) 4753.74 8233.72i 0.000936856 0.00162268i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −414562. + 718042.i −0.0800267 + 0.138610i
\(486\) 0 0
\(487\) −1.40112e6 2.42680e6i −0.267702 0.463673i 0.700566 0.713588i \(-0.252931\pi\)
−0.968268 + 0.249914i \(0.919598\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4.82008e6 −0.902299 −0.451149 0.892448i \(-0.648986\pi\)
−0.451149 + 0.892448i \(0.648986\pi\)
\(492\) 0 0
\(493\) −1.60897e6 2.78682e6i −0.298148 0.516407i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.07170e7 + 1.90125e6i −1.94618 + 0.345261i
\(498\) 0 0
\(499\) −2.29829e6 + 3.98076e6i −0.413194 + 0.715673i −0.995237 0.0974853i \(-0.968920\pi\)
0.582043 + 0.813158i \(0.302253\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −1.80055e6 −0.317311 −0.158656 0.987334i \(-0.550716\pi\)
−0.158656 + 0.987334i \(0.550716\pi\)
\(504\) 0 0
\(505\) 2.07892e6 0.362752
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.41602e6 + 4.18467e6i −0.413339 + 0.715924i −0.995253 0.0973263i \(-0.968971\pi\)
0.581913 + 0.813251i \(0.302304\pi\)
\(510\) 0 0
\(511\) −2.38446e6 2.83566e6i −0.403959 0.480400i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.55048e6 2.68552e6i −0.257602 0.446180i
\(516\) 0 0
\(517\) −1.01741e6 −0.167406
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.40562e6 + 2.43461e6i 0.226869 + 0.392948i 0.956878 0.290489i \(-0.0938178\pi\)
−0.730010 + 0.683437i \(0.760484\pi\)
\(522\) 0 0
\(523\) 1.22715e6 2.12548e6i 0.196174 0.339784i −0.751110 0.660177i \(-0.770481\pi\)
0.947285 + 0.320392i \(0.103815\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 914000. 1.58309e6i 0.143357 0.248302i
\(528\) 0 0
\(529\) −5.54076e6 9.59687e6i −0.860855 1.49104i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 58963.7 0.00899015
\(534\) 0 0
\(535\) 956445. + 1.65661e6i 0.144469 + 0.250228i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.08198e6 1.73959e6i −0.308677 0.257914i
\(540\) 0 0
\(541\) 579232. 1.00326e6i 0.0850862 0.147374i −0.820342 0.571874i \(-0.806217\pi\)
0.905428 + 0.424500i \(0.139550\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.55994e6 −0.369180
\(546\) 0 0
\(547\) 4.63638e6 0.662538 0.331269 0.943536i \(-0.392523\pi\)
0.331269 + 0.943536i \(0.392523\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.97185e6 + 5.14740e6i −0.417012 + 0.722285i
\(552\) 0 0
\(553\) −2.65080e6 + 7.30676e6i −0.368608 + 1.01604i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 135916. + 235414.i 0.0185624 + 0.0321510i 0.875157 0.483838i \(-0.160758\pi\)
−0.856595 + 0.515989i \(0.827424\pi\)
\(558\) 0 0
\(559\) −76730.0 −0.0103857
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.69122e6 + 2.92928e6i 0.224869 + 0.389485i 0.956280 0.292452i \(-0.0944712\pi\)
−0.731411 + 0.681937i \(0.761138\pi\)
\(564\) 0 0
\(565\) −1.20702e6 + 2.09063e6i −0.159072 + 0.275522i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.56130e6 1.13645e7i 0.849590 1.47153i −0.0319843 0.999488i \(-0.510183\pi\)
0.881574 0.472045i \(-0.156484\pi\)
\(570\) 0 0
\(571\) 7.35811e6 + 1.27446e7i 0.944443 + 1.63582i 0.756862 + 0.653575i \(0.226731\pi\)
0.187581 + 0.982249i \(0.439935\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.16355e7 1.46762
\(576\) 0 0
\(577\) 1.94148e6 + 3.36273e6i 0.242769 + 0.420487i 0.961502 0.274798i \(-0.0886111\pi\)
−0.718733 + 0.695286i \(0.755278\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7.86099e6 + 1.39457e6i −0.966134 + 0.171396i
\(582\) 0 0
\(583\) 1.32504e6 2.29503e6i 0.161457 0.279651i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.97913e6 −0.596428 −0.298214 0.954499i \(-0.596391\pi\)
−0.298214 + 0.954499i \(0.596391\pi\)
\(588\) 0 0
\(589\) −3.37641e6 −0.401021
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 7.66344e6 1.32735e7i 0.894926 1.55006i 0.0610292 0.998136i \(-0.480562\pi\)
0.833896 0.551921i \(-0.186105\pi\)
\(594\) 0 0
\(595\) −1.81547e6 + 322073.i −0.210231 + 0.0372959i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −3.31480e6 5.74141e6i −0.377477 0.653810i 0.613217 0.789914i \(-0.289875\pi\)
−0.990694 + 0.136104i \(0.956542\pi\)
\(600\) 0 0
\(601\) −1.45010e6 −0.163762 −0.0818808 0.996642i \(-0.526093\pi\)
−0.0818808 + 0.996642i \(0.526093\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.25370e6 + 2.17147e6i 0.139253 + 0.241194i
\(606\) 0 0
\(607\) −1.95555e6 + 3.38711e6i −0.215425 + 0.373128i −0.953404 0.301696i \(-0.902447\pi\)
0.737979 + 0.674824i \(0.235780\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 44523.1 77116.2i 0.00482483 0.00835685i
\(612\) 0 0
\(613\) −5.88765e6 1.01977e7i −0.632835 1.09610i −0.986969 0.160908i \(-0.948558\pi\)
0.354134 0.935195i \(-0.384776\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.61462e6 0.488004 0.244002 0.969775i \(-0.421540\pi\)
0.244002 + 0.969775i \(0.421540\pi\)
\(618\) 0 0
\(619\) 2.83733e6 + 4.91440e6i 0.297634 + 0.515518i 0.975594 0.219581i \(-0.0704690\pi\)
−0.677960 + 0.735099i \(0.737136\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.87013e6 + 5.15489e6i −0.193042 + 0.532107i
\(624\) 0 0
\(625\) −3.32511e6 + 5.75926e6i −0.340491 + 0.589748i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −515271. −0.0519289
\(630\) 0 0
\(631\) 5.67894e6 0.567798 0.283899 0.958854i \(-0.408372\pi\)
0.283899 + 0.958854i \(0.408372\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.25925e6 3.91313e6i 0.222346 0.385114i
\(636\) 0 0
\(637\) 222964. 81680.2i 0.0217714 0.00797569i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.05369e6 1.82504e6i −0.101290 0.175439i 0.810926 0.585148i \(-0.198964\pi\)
−0.912216 + 0.409709i \(0.865630\pi\)
\(642\) 0 0
\(643\) −2.30987e6 −0.220323 −0.110162 0.993914i \(-0.535137\pi\)
−0.110162 + 0.993914i \(0.535137\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.93033e6 + 8.53958e6i 0.463036 + 0.802003i 0.999111 0.0421683i \(-0.0134266\pi\)
−0.536074 + 0.844171i \(0.680093\pi\)
\(648\) 0 0
\(649\) 320147. 554510.i 0.0298358 0.0516771i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.01545e6 8.68701e6i 0.460285 0.797237i −0.538690 0.842504i \(-0.681081\pi\)
0.998975 + 0.0452673i \(0.0144139\pi\)
\(654\) 0 0
\(655\) 1.80483e6 + 3.12605e6i 0.164374 + 0.284704i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.42828e7 1.28115 0.640575 0.767895i \(-0.278696\pi\)
0.640575 + 0.767895i \(0.278696\pi\)
\(660\) 0 0
\(661\) 9.82097e6 + 1.70104e7i 0.874280 + 1.51430i 0.857527 + 0.514438i \(0.172000\pi\)
0.0167532 + 0.999860i \(0.494667\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.19182e6 + 2.60657e6i 0.192199 + 0.228568i
\(666\) 0 0
\(667\) 8.79486e6 1.52331e7i 0.765445 1.32579i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −8.12596e6 −0.696736
\(672\) 0 0
\(673\) −9.00150e6 −0.766086 −0.383043 0.923731i \(-0.625124\pi\)
−0.383043 + 0.923731i \(0.625124\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.71181e6 1.16252e7i 0.562818 0.974830i −0.434431 0.900705i \(-0.643050\pi\)
0.997249 0.0741247i \(-0.0236163\pi\)
\(678\) 0 0
\(679\) −5.69800e6 + 1.01085e6i −0.474294 + 0.0841418i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −4.00840e6 6.94276e6i −0.328791 0.569483i 0.653481 0.756943i \(-0.273308\pi\)
−0.982272 + 0.187460i \(0.939974\pi\)
\(684\) 0 0
\(685\) 57463.5 0.00467913
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 115970. + 200866.i 0.00930673 + 0.0161197i
\(690\) 0 0
\(691\) 1.20987e7 2.09555e7i 0.963923 1.66956i 0.251442 0.967872i \(-0.419095\pi\)
0.712481 0.701691i \(-0.247572\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −209894. + 363547.i −0.0164831 + 0.0285495i
\(696\) 0 0
\(697\) −1.59781e6 2.76749e6i −0.124578 0.215776i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.56268e6 0.120109 0.0600543 0.998195i \(-0.480873\pi\)
0.0600543 + 0.998195i \(0.480873\pi\)
\(702\) 0 0
\(703\) 475866. + 824224.i 0.0363158 + 0.0629009i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9.33851e6 + 1.11056e7i 0.702634 + 0.835592i
\(708\) 0 0
\(709\) 9.76950e6 1.69213e7i 0.729889 1.26420i −0.227041 0.973885i \(-0.572905\pi\)
0.956930 0.290320i \(-0.0937616\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9.99210e6 0.736093
\(714\) 0 0
\(715\) 42362.0 0.00309892
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4.05095e6 + 7.01645e6i −0.292237 + 0.506169i −0.974338 0.225089i \(-0.927733\pi\)
0.682102 + 0.731257i \(0.261066\pi\)
\(720\) 0 0
\(721\) 7.38129e6 2.03460e7i 0.528804 1.45761i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5.84161e6 + 1.01180e7i 0.412750 + 0.714904i
\(726\) 0 0
\(727\) 2.52759e7 1.77366 0.886829 0.462098i \(-0.152903\pi\)
0.886829 + 0.462098i \(0.152903\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.07924e6 + 3.60135e6i 0.143917 + 0.249271i
\(732\) 0 0
\(733\) −1.37207e7 + 2.37650e7i −0.943228 + 1.63372i −0.183969 + 0.982932i \(0.558894\pi\)
−0.759260 + 0.650787i \(0.774439\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.10135e6 + 1.90759e6i −0.0746888 + 0.129365i
\(738\) 0 0
\(739\) 3.26785e6 + 5.66008e6i 0.220115 + 0.381251i 0.954843 0.297111i \(-0.0960233\pi\)
−0.734727 + 0.678362i \(0.762690\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.46784e7 1.64000 0.820001 0.572362i \(-0.193973\pi\)
0.820001 + 0.572362i \(0.193973\pi\)
\(744\) 0 0
\(745\) −3.27646e6 5.67499e6i −0.216279 0.374606i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −4.55329e6 + 1.25508e7i −0.296565 + 0.817463i
\(750\) 0 0
\(751\) 1.63911e6 2.83902e6i 0.106049 0.183683i −0.808117 0.589022i \(-0.799513\pi\)
0.914166 + 0.405339i \(0.132847\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.69507e6 0.172069
\(756\) 0 0
\(757\) 3.68090e6 0.233461 0.116731 0.993164i \(-0.462759\pi\)
0.116731 + 0.993164i \(0.462759\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.05099e7 1.82037e7i 0.657866 1.13946i −0.323301 0.946296i \(-0.604792\pi\)
0.981167 0.193162i \(-0.0618742\pi\)
\(762\) 0 0
\(763\) −1.14992e7 1.36752e7i −0.715084 0.850399i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 28019.9 + 48531.9i 0.00171980 + 0.00297878i
\(768\) 0 0
\(769\) −4.15418e6 −0.253320 −0.126660 0.991946i \(-0.540426\pi\)
−0.126660 + 0.991946i \(0.540426\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 731741. + 1.26741e6i 0.0440462 + 0.0762903i 0.887208 0.461370i \(-0.152642\pi\)
−0.843162 + 0.537660i \(0.819308\pi\)
\(774\) 0 0
\(775\) −3.31841e6 + 5.74765e6i −0.198461 + 0.343745i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.95123e6 + 5.11169e6i −0.174245 + 0.301801i
\(780\) 0 0
\(781\) −6.77642e6 1.17371e7i −0.397533 0.688547i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4.04726e6 −0.234416
\(786\) 0 0
\(787\) 1.00855e7 + 1.74687e7i 0.580446 + 1.00536i 0.995426 + 0.0955317i \(0.0304551\pi\)
−0.414980 + 0.909830i \(0.636212\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0