Properties

Label 252.6.k.e.109.2
Level $252$
Weight $6$
Character 252.109
Analytic conductor $40.417$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,6,Mod(37,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.37");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 252.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.4167225929\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7081})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 1771x^{2} + 1770x + 3132900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.2
Root \(-20.7872 - 36.0044i\) of defining polynomial
Character \(\chi\) \(=\) 252.109
Dual form 252.6.k.e.37.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(32.7872 + 56.7890i) q^{5} +(40.6487 + 123.104i) q^{7} +(-122.787 + 212.674i) q^{11} +434.872 q^{13} +(-551.149 + 954.618i) q^{17} +(1438.65 + 2491.81i) q^{19} +(-2114.72 - 3662.80i) q^{23} +(-587.497 + 1017.57i) q^{25} -4969.60 q^{29} +(4391.32 - 7606.00i) q^{31} +(-5658.22 + 6344.64i) q^{35} +(1220.03 + 2113.15i) q^{37} +3668.55 q^{41} -7198.06 q^{43} +(1636.66 + 2834.78i) q^{47} +(-13502.4 + 10008.1i) q^{49} +(-1510.84 + 2616.84i) q^{53} -16103.4 q^{55} +(-25743.7 + 44589.5i) q^{59} +(6656.65 + 11529.6i) q^{61} +(14258.2 + 24695.9i) q^{65} +(-15447.9 + 26756.5i) q^{67} +41882.8 q^{71} +(-17308.7 + 29979.5i) q^{73} +(-31172.2 - 6470.74i) q^{77} +(-38771.7 - 67154.6i) q^{79} -100908. q^{83} -72282.4 q^{85} +(20391.8 + 35319.7i) q^{89} +(17677.0 + 53534.6i) q^{91} +(-94338.2 + 163399. i) q^{95} +140147. q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 47 q^{5} - 174 q^{7} - 407 q^{11} + 898 q^{13} - 1868 q^{17} + 1463 q^{19} - 44 q^{23} + 1605 q^{25} - 1534 q^{29} + 11170 q^{31} - 9674 q^{35} + 3113 q^{37} + 15684 q^{41} - 25258 q^{43} + 9576 q^{47}+ \cdots + 369570 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 32.7872 + 56.7890i 0.586515 + 1.01587i 0.994685 + 0.102967i \(0.0328337\pi\)
−0.408170 + 0.912906i \(0.633833\pi\)
\(6\) 0 0
\(7\) 40.6487 + 123.104i 0.313546 + 0.949573i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −122.787 + 212.674i −0.305965 + 0.529946i −0.977476 0.211048i \(-0.932312\pi\)
0.671511 + 0.740995i \(0.265646\pi\)
\(12\) 0 0
\(13\) 434.872 0.713679 0.356839 0.934166i \(-0.383854\pi\)
0.356839 + 0.934166i \(0.383854\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −551.149 + 954.618i −0.462537 + 0.801138i −0.999087 0.0427312i \(-0.986394\pi\)
0.536550 + 0.843869i \(0.319727\pi\)
\(18\) 0 0
\(19\) 1438.65 + 2491.81i 0.914260 + 1.58355i 0.807981 + 0.589209i \(0.200560\pi\)
0.106279 + 0.994336i \(0.466106\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2114.72 3662.80i −0.833552 1.44375i −0.895204 0.445657i \(-0.852970\pi\)
0.0616521 0.998098i \(-0.480363\pi\)
\(24\) 0 0
\(25\) −587.497 + 1017.57i −0.187999 + 0.325624i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4969.60 −1.09730 −0.548652 0.836051i \(-0.684859\pi\)
−0.548652 + 0.836051i \(0.684859\pi\)
\(30\) 0 0
\(31\) 4391.32 7606.00i 0.820713 1.42152i −0.0844390 0.996429i \(-0.526910\pi\)
0.905152 0.425088i \(-0.139757\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5658.22 + 6344.64i −0.780746 + 0.875462i
\(36\) 0 0
\(37\) 1220.03 + 2113.15i 0.146510 + 0.253762i 0.929935 0.367723i \(-0.119863\pi\)
−0.783425 + 0.621486i \(0.786529\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3668.55 0.340828 0.170414 0.985373i \(-0.445489\pi\)
0.170414 + 0.985373i \(0.445489\pi\)
\(42\) 0 0
\(43\) −7198.06 −0.593669 −0.296835 0.954929i \(-0.595931\pi\)
−0.296835 + 0.954929i \(0.595931\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1636.66 + 2834.78i 0.108072 + 0.187187i 0.914989 0.403478i \(-0.132199\pi\)
−0.806917 + 0.590665i \(0.798866\pi\)
\(48\) 0 0
\(49\) −13502.4 + 10008.1i −0.803378 + 0.595470i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1510.84 + 2616.84i −0.0738801 + 0.127964i −0.900599 0.434651i \(-0.856872\pi\)
0.826719 + 0.562616i \(0.190205\pi\)
\(54\) 0 0
\(55\) −16103.4 −0.717811
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −25743.7 + 44589.5i −0.962812 + 1.66764i −0.247432 + 0.968905i \(0.579587\pi\)
−0.715381 + 0.698735i \(0.753747\pi\)
\(60\) 0 0
\(61\) 6656.65 + 11529.6i 0.229050 + 0.396727i 0.957527 0.288344i \(-0.0931046\pi\)
−0.728477 + 0.685071i \(0.759771\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 14258.2 + 24695.9i 0.418583 + 0.725007i
\(66\) 0 0
\(67\) −15447.9 + 26756.5i −0.420418 + 0.728186i −0.995980 0.0895723i \(-0.971450\pi\)
0.575562 + 0.817758i \(0.304783\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 41882.8 0.986030 0.493015 0.870021i \(-0.335895\pi\)
0.493015 + 0.870021i \(0.335895\pi\)
\(72\) 0 0
\(73\) −17308.7 + 29979.5i −0.380151 + 0.658441i −0.991084 0.133242i \(-0.957461\pi\)
0.610932 + 0.791683i \(0.290795\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −31172.2 6470.74i −0.599157 0.124373i
\(78\) 0 0
\(79\) −38771.7 67154.6i −0.698952 1.21062i −0.968830 0.247726i \(-0.920317\pi\)
0.269878 0.962895i \(-0.413017\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −100908. −1.60779 −0.803897 0.594768i \(-0.797244\pi\)
−0.803897 + 0.594768i \(0.797244\pi\)
\(84\) 0 0
\(85\) −72282.4 −1.08514
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 20391.8 + 35319.7i 0.272886 + 0.472652i 0.969600 0.244697i \(-0.0786885\pi\)
−0.696714 + 0.717349i \(0.745355\pi\)
\(90\) 0 0
\(91\) 17677.0 + 53534.6i 0.223771 + 0.677690i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −94338.2 + 163399.i −1.07245 + 1.85755i
\(96\) 0 0
\(97\) 140147. 1.51236 0.756178 0.654366i \(-0.227064\pi\)
0.756178 + 0.654366i \(0.227064\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4288.23 7427.43i 0.0418287 0.0724494i −0.844353 0.535787i \(-0.820015\pi\)
0.886182 + 0.463338i \(0.153348\pi\)
\(102\) 0 0
\(103\) 17630.1 + 30536.2i 0.163742 + 0.283610i 0.936208 0.351447i \(-0.114310\pi\)
−0.772466 + 0.635057i \(0.780977\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −96314.3 166821.i −0.813264 1.40861i −0.910568 0.413360i \(-0.864355\pi\)
0.0973041 0.995255i \(-0.468978\pi\)
\(108\) 0 0
\(109\) −61646.1 + 106774.i −0.496980 + 0.860795i −0.999994 0.00348322i \(-0.998891\pi\)
0.503014 + 0.864279i \(0.332225\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −28400.9 −0.209236 −0.104618 0.994512i \(-0.533362\pi\)
−0.104618 + 0.994512i \(0.533362\pi\)
\(114\) 0 0
\(115\) 138671. 240186.i 0.977781 1.69357i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −139921. 29044.9i −0.905765 0.188019i
\(120\) 0 0
\(121\) 50372.1 + 87247.1i 0.312771 + 0.541736i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 127870. 0.731973
\(126\) 0 0
\(127\) −47198.8 −0.259670 −0.129835 0.991536i \(-0.541445\pi\)
−0.129835 + 0.991536i \(0.541445\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 39904.7 + 69116.9i 0.203163 + 0.351889i 0.949546 0.313628i \(-0.101544\pi\)
−0.746383 + 0.665517i \(0.768211\pi\)
\(132\) 0 0
\(133\) −248273. + 278392.i −1.21703 + 1.36467i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −43032.1 + 74533.9i −0.195881 + 0.339275i −0.947189 0.320676i \(-0.896090\pi\)
0.751308 + 0.659952i \(0.229423\pi\)
\(138\) 0 0
\(139\) 270587. 1.18787 0.593935 0.804513i \(-0.297573\pi\)
0.593935 + 0.804513i \(0.297573\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −53396.7 + 92485.7i −0.218360 + 0.378211i
\(144\) 0 0
\(145\) −162939. 282219.i −0.643585 1.11472i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −86273.9 149431.i −0.318356 0.551410i 0.661789 0.749690i \(-0.269798\pi\)
−0.980145 + 0.198281i \(0.936464\pi\)
\(150\) 0 0
\(151\) 8949.75 15501.4i 0.0319425 0.0553260i −0.849612 0.527408i \(-0.823164\pi\)
0.881555 + 0.472082i \(0.156497\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 575916. 1.92544
\(156\) 0 0
\(157\) 89509.3 155035.i 0.289814 0.501972i −0.683951 0.729528i \(-0.739740\pi\)
0.973765 + 0.227555i \(0.0730733\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 364946. 409219.i 1.10959 1.24420i
\(162\) 0 0
\(163\) 118645. + 205498.i 0.349767 + 0.605814i 0.986208 0.165511i \(-0.0529275\pi\)
−0.636441 + 0.771325i \(0.719594\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 94040.0 0.260928 0.130464 0.991453i \(-0.458353\pi\)
0.130464 + 0.991453i \(0.458353\pi\)
\(168\) 0 0
\(169\) −182180. −0.490663
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 244357. + 423238.i 0.620739 + 1.07515i 0.989348 + 0.145567i \(0.0465006\pi\)
−0.368609 + 0.929584i \(0.620166\pi\)
\(174\) 0 0
\(175\) −149149. 30960.4i −0.368150 0.0764207i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 406498. 704075.i 0.948257 1.64243i 0.199161 0.979967i \(-0.436178\pi\)
0.749095 0.662462i \(-0.230488\pi\)
\(180\) 0 0
\(181\) −332961. −0.755434 −0.377717 0.925921i \(-0.623291\pi\)
−0.377717 + 0.925921i \(0.623291\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −80002.7 + 138569.i −0.171860 + 0.297671i
\(186\) 0 0
\(187\) −135348. 234430.i −0.283040 0.490240i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −72143.9 124957.i −0.143092 0.247843i 0.785567 0.618776i \(-0.212371\pi\)
−0.928660 + 0.370933i \(0.879038\pi\)
\(192\) 0 0
\(193\) 447310. 774763.i 0.864400 1.49719i −0.00324119 0.999995i \(-0.501032\pi\)
0.867641 0.497190i \(-0.165635\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 599462. 1.10052 0.550258 0.834995i \(-0.314530\pi\)
0.550258 + 0.834995i \(0.314530\pi\)
\(198\) 0 0
\(199\) 389129. 673992.i 0.696564 1.20648i −0.273086 0.961990i \(-0.588044\pi\)
0.969651 0.244495i \(-0.0786222\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −202008. 611780.i −0.344055 1.04197i
\(204\) 0 0
\(205\) 120282. + 208334.i 0.199901 + 0.346238i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −706589. −1.11893
\(210\) 0 0
\(211\) −810532. −1.25333 −0.626663 0.779291i \(-0.715580\pi\)
−0.626663 + 0.779291i \(0.715580\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −236004. 408771.i −0.348196 0.603093i
\(216\) 0 0
\(217\) 1.11483e6 + 231418.i 1.60717 + 0.333616i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −239679. + 415136.i −0.330103 + 0.571755i
\(222\) 0 0
\(223\) 220486. 0.296905 0.148453 0.988920i \(-0.452571\pi\)
0.148453 + 0.988920i \(0.452571\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 671890. 1.16375e6i 0.865433 1.49897i −0.00118391 0.999999i \(-0.500377\pi\)
0.866617 0.498974i \(-0.166290\pi\)
\(228\) 0 0
\(229\) 521292. + 902904.i 0.656889 + 1.13777i 0.981417 + 0.191889i \(0.0614614\pi\)
−0.324528 + 0.945876i \(0.605205\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 316256. + 547771.i 0.381635 + 0.661011i 0.991296 0.131651i \(-0.0420278\pi\)
−0.609661 + 0.792662i \(0.708694\pi\)
\(234\) 0 0
\(235\) −107323. + 185889.i −0.126772 + 0.219575i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 684919. 0.775612 0.387806 0.921741i \(-0.373233\pi\)
0.387806 + 0.921741i \(0.373233\pi\)
\(240\) 0 0
\(241\) 3866.44 6696.87i 0.00428814 0.00742728i −0.863873 0.503709i \(-0.831968\pi\)
0.868162 + 0.496282i \(0.165302\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.01105e6 438651.i −1.07611 0.466878i
\(246\) 0 0
\(247\) 625626. + 1.08362e6i 0.652488 + 1.13014i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.09614e6 −1.09820 −0.549098 0.835758i \(-0.685029\pi\)
−0.549098 + 0.835758i \(0.685029\pi\)
\(252\) 0 0
\(253\) 1.03864e6 1.02015
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 357460. + 619139.i 0.337594 + 0.584730i 0.983980 0.178281i \(-0.0570536\pi\)
−0.646386 + 0.763011i \(0.723720\pi\)
\(258\) 0 0
\(259\) −210546. + 236088.i −0.195028 + 0.218688i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −298256. + 516595.i −0.265889 + 0.460533i −0.967796 0.251735i \(-0.918999\pi\)
0.701907 + 0.712268i \(0.252332\pi\)
\(264\) 0 0
\(265\) −198144. −0.173327
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.01654e6 + 1.76070e6i −0.856531 + 1.48356i 0.0186864 + 0.999825i \(0.494052\pi\)
−0.875217 + 0.483730i \(0.839282\pi\)
\(270\) 0 0
\(271\) −897277. 1.55413e6i −0.742170 1.28548i −0.951505 0.307632i \(-0.900463\pi\)
0.209336 0.977844i \(-0.432870\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −144274. 249890.i −0.115042 0.199259i
\(276\) 0 0
\(277\) −211790. + 366831.i −0.165846 + 0.287254i −0.936956 0.349449i \(-0.886369\pi\)
0.771109 + 0.636703i \(0.219702\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.63799e6 1.23750 0.618749 0.785589i \(-0.287640\pi\)
0.618749 + 0.785589i \(0.287640\pi\)
\(282\) 0 0
\(283\) 147018. 254642.i 0.109120 0.189001i −0.806294 0.591515i \(-0.798530\pi\)
0.915414 + 0.402514i \(0.131863\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 149122. + 451615.i 0.106865 + 0.323641i
\(288\) 0 0
\(289\) 102399. + 177360.i 0.0721191 + 0.124914i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 356961. 0.242913 0.121457 0.992597i \(-0.461243\pi\)
0.121457 + 0.992597i \(0.461243\pi\)
\(294\) 0 0
\(295\) −3.37626e6 −2.25881
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −919631. 1.59285e6i −0.594888 1.03038i
\(300\) 0 0
\(301\) −292592. 886113.i −0.186143 0.563732i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −436505. + 756049.i −0.268683 + 0.465372i
\(306\) 0 0
\(307\) −2.04097e6 −1.23592 −0.617960 0.786210i \(-0.712041\pi\)
−0.617960 + 0.786210i \(0.712041\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.02337e6 1.77253e6i 0.599972 1.03918i −0.392852 0.919602i \(-0.628512\pi\)
0.992824 0.119581i \(-0.0381552\pi\)
\(312\) 0 0
\(313\) −319272. 552996.i −0.184205 0.319052i 0.759104 0.650970i \(-0.225638\pi\)
−0.943308 + 0.331918i \(0.892304\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.74954e6 + 3.03030e6i 0.977860 + 1.69370i 0.670155 + 0.742221i \(0.266228\pi\)
0.307705 + 0.951482i \(0.400439\pi\)
\(318\) 0 0
\(319\) 610203. 1.05690e6i 0.335736 0.581512i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.17163e6 −1.69152
\(324\) 0 0
\(325\) −255486. + 442514.i −0.134171 + 0.232391i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −282446. + 316710.i −0.143862 + 0.161314i
\(330\) 0 0
\(331\) 1.47089e6 + 2.54766e6i 0.737923 + 1.27812i 0.953429 + 0.301618i \(0.0975266\pi\)
−0.215506 + 0.976503i \(0.569140\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.02597e6 −0.986326
\(336\) 0 0
\(337\) 2.77854e6 1.33273 0.666364 0.745627i \(-0.267850\pi\)
0.666364 + 0.745627i \(0.267850\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.07840e6 + 1.86784e6i 0.502218 + 0.869868i
\(342\) 0 0
\(343\) −1.78089e6 1.25539e6i −0.817338 0.576159i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −86001.9 + 148960.i −0.0383429 + 0.0664118i −0.884560 0.466426i \(-0.845541\pi\)
0.846217 + 0.532838i \(0.178875\pi\)
\(348\) 0 0
\(349\) −3.88321e6 −1.70658 −0.853290 0.521436i \(-0.825397\pi\)
−0.853290 + 0.521436i \(0.825397\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −385467. + 667649.i −0.164646 + 0.285175i −0.936529 0.350589i \(-0.885981\pi\)
0.771884 + 0.635764i \(0.219315\pi\)
\(354\) 0 0
\(355\) 1.37322e6 + 2.37849e6i 0.578321 + 1.00168i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.57017e6 + 2.71961e6i 0.642998 + 1.11370i 0.984760 + 0.173918i \(0.0556428\pi\)
−0.341763 + 0.939786i \(0.611024\pi\)
\(360\) 0 0
\(361\) −2.90135e6 + 5.02529e6i −1.17174 + 2.02952i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.27001e6 −0.891857
\(366\) 0 0
\(367\) 182842. 316691.i 0.0708615 0.122736i −0.828418 0.560111i \(-0.810758\pi\)
0.899279 + 0.437375i \(0.144092\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −383559. 79619.2i −0.144676 0.0300319i
\(372\) 0 0
\(373\) 77129.9 + 133593.i 0.0287045 + 0.0497177i 0.880021 0.474935i \(-0.157528\pi\)
−0.851316 + 0.524653i \(0.824195\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.16114e6 −0.783122
\(378\) 0 0
\(379\) 4.06013e6 1.45192 0.725959 0.687738i \(-0.241396\pi\)
0.725959 + 0.687738i \(0.241396\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.02152e6 + 1.76932e6i 0.355834 + 0.616323i 0.987260 0.159113i \(-0.0508633\pi\)
−0.631426 + 0.775436i \(0.717530\pi\)
\(384\) 0 0
\(385\) −654581. 1.98240e6i −0.225067 0.681614i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.06183e6 + 1.83915e6i −0.355780 + 0.616229i −0.987251 0.159170i \(-0.949118\pi\)
0.631471 + 0.775399i \(0.282451\pi\)
\(390\) 0 0
\(391\) 4.66209e6 1.54219
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.54243e6 4.40362e6i 0.819892 1.42009i
\(396\) 0 0
\(397\) 1.83182e6 + 3.17280e6i 0.583319 + 1.01034i 0.995083 + 0.0990473i \(0.0315795\pi\)
−0.411764 + 0.911291i \(0.635087\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −32044.9 55503.3i −0.00995170 0.0172369i 0.861007 0.508594i \(-0.169834\pi\)
−0.870958 + 0.491357i \(0.836501\pi\)
\(402\) 0 0
\(403\) 1.90966e6 3.30763e6i 0.585725 1.01451i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −599216. −0.179307
\(408\) 0 0
\(409\) −1.01287e6 + 1.75434e6i −0.299395 + 0.518568i −0.975998 0.217781i \(-0.930118\pi\)
0.676603 + 0.736348i \(0.263452\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.53561e6 1.35666e6i −1.88543 0.391379i
\(414\) 0 0
\(415\) −3.30849e6 5.73047e6i −0.942995 1.63332i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2.38986e6 −0.665025 −0.332513 0.943099i \(-0.607896\pi\)
−0.332513 + 0.943099i \(0.607896\pi\)
\(420\) 0 0
\(421\) 3.46875e6 0.953822 0.476911 0.878952i \(-0.341756\pi\)
0.476911 + 0.878952i \(0.341756\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −647596. 1.12167e6i −0.173913 0.301226i
\(426\) 0 0
\(427\) −1.14877e6 + 1.28813e6i −0.304903 + 0.341892i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −802201. + 1.38945e6i −0.208013 + 0.360289i −0.951088 0.308919i \(-0.900033\pi\)
0.743076 + 0.669207i \(0.233366\pi\)
\(432\) 0 0
\(433\) 741661. 0.190102 0.0950508 0.995472i \(-0.469699\pi\)
0.0950508 + 0.995472i \(0.469699\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.08466e6 1.05389e7i 1.52417 2.63993i
\(438\) 0 0
\(439\) −1.43394e6 2.48365e6i −0.355115 0.615077i 0.632023 0.774950i \(-0.282225\pi\)
−0.987138 + 0.159873i \(0.948892\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −89148.9 154410.i −0.0215827 0.0373824i 0.855032 0.518575i \(-0.173537\pi\)
−0.876615 + 0.481192i \(0.840204\pi\)
\(444\) 0 0
\(445\) −1.33718e6 + 2.31607e6i −0.320103 + 0.554435i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.77890e6 0.650515 0.325258 0.945625i \(-0.394549\pi\)
0.325258 + 0.945625i \(0.394549\pi\)
\(450\) 0 0
\(451\) −450451. + 780205.i −0.104281 + 0.180621i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.46060e6 + 2.75911e6i −0.557202 + 0.624798i
\(456\) 0 0
\(457\) −3.20669e6 5.55416e6i −0.718236 1.24402i −0.961698 0.274111i \(-0.911617\pi\)
0.243462 0.969910i \(-0.421717\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.88393e6 1.50864 0.754318 0.656510i \(-0.227968\pi\)
0.754318 + 0.656510i \(0.227968\pi\)
\(462\) 0 0
\(463\) 6.70530e6 1.45367 0.726835 0.686812i \(-0.240991\pi\)
0.726835 + 0.686812i \(0.240991\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.62836e6 2.82041e6i −0.345509 0.598439i 0.639937 0.768427i \(-0.278960\pi\)
−0.985446 + 0.169988i \(0.945627\pi\)
\(468\) 0 0
\(469\) −3.92178e6 814084.i −0.823286 0.170898i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 883830. 1.53084e6i 0.181642 0.314613i
\(474\) 0 0
\(475\) −3.38080e6 −0.687520
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.67916e6 8.10454e6i 0.931814 1.61395i 0.151595 0.988443i \(-0.451559\pi\)
0.780219 0.625506i \(-0.215108\pi\)
\(480\) 0 0
\(481\) 530557. + 918951.i 0.104561 + 0.181105i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.59502e6 + 7.95881e6i 0.887019 + 1.53636i
\(486\) 0 0
\(487\) 1.31470e6 2.27712e6i 0.251191 0.435075i −0.712663 0.701506i \(-0.752511\pi\)
0.963854 + 0.266431i \(0.0858445\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.81856e6 0.902015 0.451008 0.892520i \(-0.351065\pi\)
0.451008 + 0.892520i \(0.351065\pi\)
\(492\) 0 0
\(493\) 2.73899e6 4.74407e6i 0.507543 0.879091i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.70248e6 + 5.15596e6i 0.309166 + 0.936308i
\(498\) 0 0
\(499\) 2.09549e6 + 3.62949e6i 0.376733 + 0.652521i 0.990585 0.136900i \(-0.0437139\pi\)
−0.613851 + 0.789422i \(0.710381\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.75338e6 0.308999 0.154500 0.987993i \(-0.450623\pi\)
0.154500 + 0.987993i \(0.450623\pi\)
\(504\) 0 0
\(505\) 562395. 0.0981326
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2.80923e6 + 4.86573e6i 0.480610 + 0.832441i 0.999753 0.0222464i \(-0.00708185\pi\)
−0.519142 + 0.854688i \(0.673749\pi\)
\(510\) 0 0
\(511\) −4.39418e6 912146.i −0.744433 0.154530i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.15608e6 + 2.00239e6i −0.192075 + 0.332683i
\(516\) 0 0
\(517\) −803844. −0.132265
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5.53589e6 9.58845e6i 0.893498 1.54758i 0.0578446 0.998326i \(-0.481577\pi\)
0.835653 0.549258i \(-0.185089\pi\)
\(522\) 0 0
\(523\) 3.79894e6 + 6.57996e6i 0.607307 + 1.05189i 0.991682 + 0.128710i \(0.0410836\pi\)
−0.384375 + 0.923177i \(0.625583\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.84055e6 + 8.38407e6i 0.759220 + 1.31501i
\(528\) 0 0
\(529\) −5.72588e6 + 9.91752e6i −0.889618 + 1.54086i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.59535e6 0.243242
\(534\) 0 0
\(535\) 6.31575e6 1.09392e7i 0.953982 1.65235i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −470532. 4.10046e6i −0.0697618 0.607940i
\(540\) 0 0
\(541\) 1.67539e6 + 2.90187e6i 0.246107 + 0.426270i 0.962442 0.271486i \(-0.0875152\pi\)
−0.716335 + 0.697756i \(0.754182\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −8.08480e6 −1.16595
\(546\) 0 0
\(547\) −1.00856e7 −1.44123 −0.720615 0.693335i \(-0.756140\pi\)
−0.720615 + 0.693335i \(0.756140\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7.14950e6 1.23833e7i −1.00322 1.73763i
\(552\) 0 0
\(553\) 6.69101e6 7.50272e6i 0.930419 1.04329i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6.78337e6 1.17491e7i 0.926419 1.60460i 0.137155 0.990550i \(-0.456204\pi\)
0.789263 0.614055i \(-0.210463\pi\)
\(558\) 0 0
\(559\) −3.13023e6 −0.423689
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.98494e6 + 3.43802e6i −0.263922 + 0.457127i −0.967281 0.253708i \(-0.918350\pi\)
0.703358 + 0.710835i \(0.251683\pi\)
\(564\) 0 0
\(565\) −931185. 1.61286e6i −0.122720 0.212557i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.08724e6 3.61521e6i −0.270267 0.468116i 0.698663 0.715451i \(-0.253779\pi\)
−0.968930 + 0.247335i \(0.920445\pi\)
\(570\) 0 0
\(571\) −1.92833e6 + 3.33996e6i −0.247509 + 0.428698i −0.962834 0.270094i \(-0.912945\pi\)
0.715325 + 0.698792i \(0.246279\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.96956e6 0.626828
\(576\) 0 0
\(577\) 1.12288e6 1.94488e6i 0.140408 0.243194i −0.787242 0.616644i \(-0.788492\pi\)
0.927650 + 0.373450i \(0.121825\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.10178e6 1.24222e7i −0.504118 1.52672i
\(582\) 0 0
\(583\) −371023. 642630.i −0.0452094 0.0783050i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −6.40082e6 −0.766726 −0.383363 0.923598i \(-0.625234\pi\)
−0.383363 + 0.923598i \(0.625234\pi\)
\(588\) 0 0
\(589\) 2.52702e7 3.00138
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 5.56031e6 + 9.63074e6i 0.649325 + 1.12466i 0.983284 + 0.182077i \(0.0582820\pi\)
−0.333959 + 0.942588i \(0.608385\pi\)
\(594\) 0 0
\(595\) −2.93818e6 8.89828e6i −0.340241 1.03042i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6.56707e6 + 1.13745e7i −0.747833 + 1.29528i 0.201027 + 0.979586i \(0.435572\pi\)
−0.948860 + 0.315698i \(0.897761\pi\)
\(600\) 0 0
\(601\) −7.88546e6 −0.890514 −0.445257 0.895403i \(-0.646888\pi\)
−0.445257 + 0.895403i \(0.646888\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.30312e6 + 5.72117e6i −0.366890 + 0.635472i
\(606\) 0 0
\(607\) 3.82967e6 + 6.63319e6i 0.421881 + 0.730719i 0.996123 0.0879660i \(-0.0280367\pi\)
−0.574243 + 0.818685i \(0.694703\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 711738. + 1.23277e6i 0.0771289 + 0.133591i
\(612\) 0 0
\(613\) 7.62066e6 1.31994e7i 0.819108 1.41874i −0.0872322 0.996188i \(-0.527802\pi\)
0.906340 0.422549i \(-0.138864\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.35844e7 −1.43657 −0.718285 0.695749i \(-0.755073\pi\)
−0.718285 + 0.695749i \(0.755073\pi\)
\(618\) 0 0
\(619\) −3.18709e6 + 5.52019e6i −0.334324 + 0.579066i −0.983355 0.181696i \(-0.941841\pi\)
0.649031 + 0.760762i \(0.275175\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.51911e6 + 3.94602e6i −0.363256 + 0.407323i
\(624\) 0 0
\(625\) 6.02844e6 + 1.04416e7i 0.617312 + 1.06922i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.68967e6 −0.271065
\(630\) 0 0
\(631\) −1.42736e7 −1.42712 −0.713561 0.700593i \(-0.752919\pi\)
−0.713561 + 0.700593i \(0.752919\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1.54751e6 2.68037e6i −0.152300 0.263792i
\(636\) 0 0
\(637\) −5.87180e6 + 4.35222e6i −0.573354 + 0.424974i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −4.63480e6 + 8.02771e6i −0.445539 + 0.771697i −0.998090 0.0617828i \(-0.980321\pi\)
0.552550 + 0.833480i \(0.313655\pi\)
\(642\) 0 0
\(643\) 1.17375e7 1.11956 0.559780 0.828641i \(-0.310885\pi\)
0.559780 + 0.828641i \(0.310885\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.12724e6 8.88063e6i 0.481529 0.834033i −0.518246 0.855232i \(-0.673415\pi\)
0.999775 + 0.0211984i \(0.00674818\pi\)
\(648\) 0 0
\(649\) −6.32200e6 1.09500e7i −0.589173 1.02048i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.14489e6 + 7.17915e6i 0.380391 + 0.658856i 0.991118 0.132985i \(-0.0424562\pi\)
−0.610727 + 0.791841i \(0.709123\pi\)
\(654\) 0 0
\(655\) −2.61672e6 + 4.53230e6i −0.238317 + 0.412776i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.06731e7 1.85435 0.927174 0.374631i \(-0.122230\pi\)
0.927174 + 0.374631i \(0.122230\pi\)
\(660\) 0 0
\(661\) −97171.2 + 168305.i −0.00865035 + 0.0149829i −0.870318 0.492490i \(-0.836087\pi\)
0.861668 + 0.507473i \(0.169420\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2.39498e7 4.97151e6i −2.10014 0.435948i
\(666\) 0 0
\(667\) 1.05093e7 + 1.82026e7i 0.914659 + 1.58424i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.26940e6 −0.280325
\(672\) 0 0
\(673\) −1.14437e7 −0.973929 −0.486965 0.873422i \(-0.661896\pi\)
−0.486965 + 0.873422i \(0.661896\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4.51869e6 + 7.82660e6i 0.378914 + 0.656299i 0.990905 0.134567i \(-0.0429642\pi\)
−0.611990 + 0.790865i \(0.709631\pi\)
\(678\) 0 0
\(679\) 5.69679e6 + 1.72527e7i 0.474193 + 1.43609i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −5.59212e6 + 9.68584e6i −0.458696 + 0.794485i −0.998892 0.0470541i \(-0.985017\pi\)
0.540196 + 0.841539i \(0.318350\pi\)
\(684\) 0 0
\(685\) −5.64361e6 −0.459548
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −657020. + 1.13799e6i −0.0527267 + 0.0913253i
\(690\) 0 0
\(691\) −2.83465e6 4.90976e6i −0.225842 0.391170i 0.730730 0.682667i \(-0.239180\pi\)
−0.956572 + 0.291497i \(0.905847\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.87177e6 + 1.53664e7i 0.696704 + 1.20673i
\(696\) 0 0
\(697\) −2.02192e6 + 3.50207e6i −0.157646 + 0.273050i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.31822e6 0.101320 0.0506599 0.998716i \(-0.483868\pi\)
0.0506599 + 0.998716i \(0.483868\pi\)
\(702\) 0 0
\(703\) −3.51038e6 + 6.08016e6i −0.267896 + 0.464009i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.08866e6 + 225984.i 0.0819112 + 0.0170032i
\(708\) 0 0
\(709\) −4.13018e6 7.15368e6i −0.308570 0.534458i 0.669480 0.742830i \(-0.266517\pi\)
−0.978050 + 0.208372i \(0.933184\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.71456e7 −2.73643
\(714\) 0 0
\(715\) −7.00290e6 −0.512287
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.13372e7 + 1.96365e7i 0.817865 + 1.41658i 0.907252 + 0.420587i \(0.138176\pi\)
−0.0893870 + 0.995997i \(0.528491\pi\)
\(720\) 0 0
\(721\) −3.04250e6 + 3.41159e6i −0.217968 + 0.244410i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.91963e6 5.05694e6i 0.206292 0.357308i
\(726\) 0 0
\(727\) −1.93477e7 −1.35767 −0.678833 0.734293i \(-0.737514\pi\)
−0.678833 + 0.734293i \(0.737514\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.96720e6 6.87140e6i 0.274594 0.475611i
\(732\) 0 0
\(733\) −7.42922e6 1.28678e7i −0.510720 0.884593i −0.999923 0.0124232i \(-0.996045\pi\)
0.489203 0.872170i \(-0.337288\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.79360e6 6.57071e6i −0.257266 0.445598i
\(738\) 0 0
\(739\) 8.84089e6 1.53129e7i 0.595504 1.03144i −0.397971 0.917398i \(-0.630286\pi\)
0.993476 0.114045i \(-0.0363810\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8.28756e6 0.550750 0.275375 0.961337i \(-0.411198\pi\)
0.275375 + 0.961337i \(0.411198\pi\)
\(744\) 0 0
\(745\) 5.65735e6 9.79882e6i 0.373442 0.646820i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.66214e7 1.86378e7i 1.08259 1.21392i
\(750\) 0 0
\(751\) 1.15682e7 + 2.00368e7i 0.748457 + 1.29637i 0.948562 + 0.316592i \(0.102539\pi\)
−0.200104 + 0.979775i \(0.564128\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.17375e6 0.0749389
\(756\) 0 0
\(757\) −1.95475e7 −1.23980 −0.619900 0.784681i \(-0.712827\pi\)
−0.619900 + 0.784681i \(0.712827\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3.91233e6 + 6.77635e6i 0.244891 + 0.424164i 0.962101 0.272693i \(-0.0879144\pi\)
−0.717210 + 0.696857i \(0.754581\pi\)
\(762\) 0 0
\(763\) −1.56502e7 3.24867e6i −0.973214 0.202020i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.11952e7 + 1.93907e7i −0.687139 + 1.19016i
\(768\) 0 0
\(769\) −8.27325e6 −0.504499 −0.252250 0.967662i \(-0.581170\pi\)
−0.252250 + 0.967662i \(0.581170\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −9.41844e6 + 1.63132e7i −0.566931 + 0.981953i 0.429936 + 0.902859i \(0.358536\pi\)
−0.996867 + 0.0790941i \(0.974797\pi\)
\(774\) 0 0
\(775\) 5.15978e6 + 8.93700e6i 0.308587 + 0.534488i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.27775e6 + 9.14133e6i 0.311605 + 0.539717i
\(780\) 0 0
\(781\) −5.14267e6 + 8.90737e6i −0.301690 + 0.522543i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.17390e7 0.679920
\(786\) 0 0
\(787\) 9.19734e6 1.59303e7i 0.529329 0.916824i −0.470086 0.882621i \(-0.655777\pi\)
0.999415 0.0342037i \(-0.0108895\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0