Properties

Label 252.6.k.e.109.1
Level $252$
Weight $6$
Character 252.109
Analytic conductor $40.417$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,6,Mod(37,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.37");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 252.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.4167225929\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7081})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 1771x^{2} + 1770x + 3132900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(21.2872 + 36.8705i\) of defining polynomial
Character \(\chi\) \(=\) 252.109
Dual form 252.6.k.e.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-9.28717 - 16.0858i) q^{5} +(-127.649 - 22.6454i) q^{7} +O(q^{10})\) \(q+(-9.28717 - 16.0858i) q^{5} +(-127.649 - 22.6454i) q^{7} +(-80.7128 + 139.799i) q^{11} +14.1283 q^{13} +(-382.851 + 663.118i) q^{17} +(-707.146 - 1224.81i) q^{19} +(2092.72 + 3624.69i) q^{23} +(1390.00 - 2407.55i) q^{25} +4202.60 q^{29} +(1193.68 - 2067.51i) q^{31} +(821.224 + 2263.65i) q^{35} +(336.469 + 582.782i) q^{37} +4173.45 q^{41} -5430.94 q^{43} +(3151.34 + 5458.28i) q^{47} +(15781.4 + 5781.32i) q^{49} +(8208.34 - 14217.3i) q^{53} +2998.37 q^{55} +(1983.24 - 3435.08i) q^{59} +(25169.4 + 43594.6i) q^{61} +(-131.212 - 227.266i) q^{65} +(-6822.63 + 11817.1i) q^{67} +83957.2 q^{71} +(14289.2 - 24749.6i) q^{73} +(13468.7 - 16017.3i) q^{77} +(29977.7 + 51923.0i) q^{79} +61583.0 q^{83} +14222.4 q^{85} +(21149.2 + 36631.4i) q^{89} +(-1803.46 - 319.941i) q^{91} +(-13134.8 + 22750.1i) q^{95} +44638.1 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 47 q^{5} - 174 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 47 q^{5} - 174 q^{7} - 407 q^{11} + 898 q^{13} - 1868 q^{17} + 1463 q^{19} - 44 q^{23} + 1605 q^{25} - 1534 q^{29} + 11170 q^{31} - 9674 q^{35} + 3113 q^{37} + 15684 q^{41} - 25258 q^{43} + 9576 q^{47} + 4558 q^{49} + 13395 q^{53} - 26210 q^{55} - 47521 q^{59} + 63652 q^{61} + 28254 q^{65} - 44541 q^{67} + 251680 q^{71} - 6039 q^{73} - 35407 q^{77} - 17588 q^{79} - 78650 q^{83} - 116120 q^{85} + 83082 q^{89} + 31747 q^{91} - 214946 q^{95} + 369570 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −9.28717 16.0858i −0.166134 0.287752i 0.770923 0.636928i \(-0.219795\pi\)
−0.937057 + 0.349175i \(0.886462\pi\)
\(6\) 0 0
\(7\) −127.649 22.6454i −0.984626 0.174677i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −80.7128 + 139.799i −0.201123 + 0.348355i −0.948890 0.315606i \(-0.897792\pi\)
0.747768 + 0.663960i \(0.231126\pi\)
\(12\) 0 0
\(13\) 14.1283 0.0231863 0.0115932 0.999933i \(-0.496310\pi\)
0.0115932 + 0.999933i \(0.496310\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −382.851 + 663.118i −0.321298 + 0.556504i −0.980756 0.195237i \(-0.937452\pi\)
0.659458 + 0.751741i \(0.270786\pi\)
\(18\) 0 0
\(19\) −707.146 1224.81i −0.449392 0.778369i 0.548955 0.835852i \(-0.315026\pi\)
−0.998346 + 0.0574830i \(0.981693\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2092.72 + 3624.69i 0.824880 + 1.42873i 0.902011 + 0.431713i \(0.142091\pi\)
−0.0771305 + 0.997021i \(0.524576\pi\)
\(24\) 0 0
\(25\) 1390.00 2407.55i 0.444799 0.770415i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4202.60 0.927947 0.463974 0.885849i \(-0.346423\pi\)
0.463974 + 0.885849i \(0.346423\pi\)
\(30\) 0 0
\(31\) 1193.68 2067.51i 0.223091 0.386405i −0.732654 0.680601i \(-0.761719\pi\)
0.955745 + 0.294196i \(0.0950520\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 821.224 + 2263.65i 0.113316 + 0.312348i
\(36\) 0 0
\(37\) 336.469 + 582.782i 0.0404056 + 0.0699845i 0.885521 0.464599i \(-0.153802\pi\)
−0.845115 + 0.534584i \(0.820468\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4173.45 0.387735 0.193868 0.981028i \(-0.437897\pi\)
0.193868 + 0.981028i \(0.437897\pi\)
\(42\) 0 0
\(43\) −5430.94 −0.447923 −0.223962 0.974598i \(-0.571899\pi\)
−0.223962 + 0.974598i \(0.571899\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3151.34 + 5458.28i 0.208090 + 0.360422i 0.951113 0.308844i \(-0.0999421\pi\)
−0.743023 + 0.669266i \(0.766609\pi\)
\(48\) 0 0
\(49\) 15781.4 + 5781.32i 0.938976 + 0.343983i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8208.34 14217.3i 0.401389 0.695226i −0.592505 0.805567i \(-0.701861\pi\)
0.993894 + 0.110341i \(0.0351942\pi\)
\(54\) 0 0
\(55\) 2998.37 0.133653
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1983.24 3435.08i 0.0741731 0.128472i −0.826553 0.562858i \(-0.809702\pi\)
0.900726 + 0.434387i \(0.143035\pi\)
\(60\) 0 0
\(61\) 25169.4 + 43594.6i 0.866059 + 1.50006i 0.865992 + 0.500058i \(0.166688\pi\)
6.72450e−5 1.00000i \(0.499979\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −131.212 227.266i −0.00385203 0.00667192i
\(66\) 0 0
\(67\) −6822.63 + 11817.1i −0.185680 + 0.321607i −0.943805 0.330502i \(-0.892782\pi\)
0.758126 + 0.652109i \(0.226115\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 83957.2 1.97657 0.988284 0.152624i \(-0.0487723\pi\)
0.988284 + 0.152624i \(0.0487723\pi\)
\(72\) 0 0
\(73\) 14289.2 24749.6i 0.313834 0.543576i −0.665355 0.746527i \(-0.731720\pi\)
0.979189 + 0.202951i \(0.0650532\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 13468.7 16017.3i 0.258880 0.307867i
\(78\) 0 0
\(79\) 29977.7 + 51923.0i 0.540420 + 0.936034i 0.998880 + 0.0473193i \(0.0150678\pi\)
−0.458460 + 0.888715i \(0.651599\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 61583.0 0.981219 0.490610 0.871380i \(-0.336774\pi\)
0.490610 + 0.871380i \(0.336774\pi\)
\(84\) 0 0
\(85\) 14222.4 0.213514
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 21149.2 + 36631.4i 0.283021 + 0.490206i 0.972127 0.234454i \(-0.0753301\pi\)
−0.689107 + 0.724660i \(0.741997\pi\)
\(90\) 0 0
\(91\) −1803.46 319.941i −0.0228298 0.00405011i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −13134.8 + 22750.1i −0.149318 + 0.258627i
\(96\) 0 0
\(97\) 44638.1 0.481700 0.240850 0.970562i \(-0.422574\pi\)
0.240850 + 0.970562i \(0.422574\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −55962.2 + 96929.4i −0.545873 + 0.945480i 0.452678 + 0.891674i \(0.350469\pi\)
−0.998551 + 0.0538058i \(0.982865\pi\)
\(102\) 0 0
\(103\) −83474.6 144582.i −0.775285 1.34283i −0.934634 0.355610i \(-0.884273\pi\)
0.159350 0.987222i \(-0.449060\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 51492.8 + 89188.2i 0.434798 + 0.753092i 0.997279 0.0737182i \(-0.0234865\pi\)
−0.562481 + 0.826810i \(0.690153\pi\)
\(108\) 0 0
\(109\) 68910.6 119357.i 0.555546 0.962233i −0.442315 0.896860i \(-0.645843\pi\)
0.997861 0.0653736i \(-0.0208239\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 129967. 0.957495 0.478748 0.877953i \(-0.341091\pi\)
0.478748 + 0.877953i \(0.341091\pi\)
\(114\) 0 0
\(115\) 38870.8 67326.3i 0.274081 0.474723i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 63887.0 75976.3i 0.413567 0.491825i
\(120\) 0 0
\(121\) 67496.4 + 116907.i 0.419099 + 0.725901i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −109681. −0.627853
\(126\) 0 0
\(127\) −243265. −1.33835 −0.669177 0.743103i \(-0.733353\pi\)
−0.669177 + 0.743103i \(0.733353\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 97167.8 + 168300.i 0.494703 + 0.856850i 0.999981 0.00610601i \(-0.00194361\pi\)
−0.505279 + 0.862956i \(0.668610\pi\)
\(132\) 0 0
\(133\) 62529.8 + 172359.i 0.306519 + 0.844900i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1546.85 + 2679.22i −0.00704121 + 0.0121957i −0.869525 0.493890i \(-0.835575\pi\)
0.862483 + 0.506085i \(0.168908\pi\)
\(138\) 0 0
\(139\) 22600.4 0.0992155 0.0496078 0.998769i \(-0.484203\pi\)
0.0496078 + 0.998769i \(0.484203\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1140.34 + 1975.12i −0.00466329 + 0.00807706i
\(144\) 0 0
\(145\) −39030.3 67602.4i −0.154164 0.267019i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −176397. 305529.i −0.650917 1.12742i −0.982901 0.184137i \(-0.941051\pi\)
0.331983 0.943285i \(-0.392282\pi\)
\(150\) 0 0
\(151\) −72548.2 + 125657.i −0.258931 + 0.448482i −0.965956 0.258707i \(-0.916704\pi\)
0.707025 + 0.707189i \(0.250037\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −44343.5 −0.148252
\(156\) 0 0
\(157\) 108948. 188703.i 0.352751 0.610983i −0.633979 0.773350i \(-0.718579\pi\)
0.986730 + 0.162367i \(0.0519128\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −185050. 510078.i −0.562632 1.55086i
\(162\) 0 0
\(163\) 161055. + 278956.i 0.474795 + 0.822370i 0.999583 0.0288633i \(-0.00918874\pi\)
−0.524788 + 0.851233i \(0.675855\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −707392. −1.96277 −0.981384 0.192056i \(-0.938485\pi\)
−0.981384 + 0.192056i \(0.938485\pi\)
\(168\) 0 0
\(169\) −371093. −0.999462
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −85253.7 147664.i −0.216570 0.375110i 0.737187 0.675689i \(-0.236154\pi\)
−0.953757 + 0.300579i \(0.902820\pi\)
\(174\) 0 0
\(175\) −231951. + 275843.i −0.572534 + 0.680874i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −207703. + 359752.i −0.484519 + 0.839211i −0.999842 0.0177851i \(-0.994339\pi\)
0.515323 + 0.856996i \(0.327672\pi\)
\(180\) 0 0
\(181\) −1162.38 −0.00263726 −0.00131863 0.999999i \(-0.500420\pi\)
−0.00131863 + 0.999999i \(0.500420\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6249.70 10824.8i 0.0134255 0.0232536i
\(186\) 0 0
\(187\) −61802.0 107044.i −0.129241 0.223851i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −372807. 645721.i −0.739436 1.28074i −0.952749 0.303757i \(-0.901759\pi\)
0.213313 0.976984i \(-0.431575\pi\)
\(192\) 0 0
\(193\) 99186.5 171796.i 0.191672 0.331986i −0.754132 0.656722i \(-0.771942\pi\)
0.945805 + 0.324737i \(0.105276\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 469368. 0.861684 0.430842 0.902427i \(-0.358217\pi\)
0.430842 + 0.902427i \(0.358217\pi\)
\(198\) 0 0
\(199\) 96796.7 167657.i 0.173272 0.300116i −0.766290 0.642495i \(-0.777899\pi\)
0.939562 + 0.342379i \(0.111233\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −536457. 95169.7i −0.913681 0.162091i
\(204\) 0 0
\(205\) −38759.5 67133.4i −0.0644160 0.111572i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 228303. 0.361531
\(210\) 0 0
\(211\) −298066. −0.460900 −0.230450 0.973084i \(-0.574020\pi\)
−0.230450 + 0.973084i \(0.574020\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 50438.0 + 87361.3i 0.0744153 + 0.128891i
\(216\) 0 0
\(217\) −199191. + 236883.i −0.287157 + 0.341495i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −5409.04 + 9368.73i −0.00744971 + 0.0129033i
\(222\) 0 0
\(223\) −187215. −0.252103 −0.126051 0.992024i \(-0.540230\pi\)
−0.126051 + 0.992024i \(0.540230\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −669482. + 1.15958e6i −0.862332 + 1.49360i 0.00734045 + 0.999973i \(0.497663\pi\)
−0.869672 + 0.493630i \(0.835670\pi\)
\(228\) 0 0
\(229\) −475828. 824158.i −0.599600 1.03854i −0.992880 0.119119i \(-0.961993\pi\)
0.393280 0.919419i \(-0.371340\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 371709. + 643820.i 0.448553 + 0.776917i 0.998292 0.0584197i \(-0.0186062\pi\)
−0.549739 + 0.835336i \(0.685273\pi\)
\(234\) 0 0
\(235\) 58534.0 101384.i 0.0691415 0.119757i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 625847. 0.708718 0.354359 0.935110i \(-0.384699\pi\)
0.354359 + 0.935110i \(0.384699\pi\)
\(240\) 0 0
\(241\) 666411. 1.15426e6i 0.739094 1.28015i −0.213810 0.976875i \(-0.568587\pi\)
0.952904 0.303273i \(-0.0980793\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −53566.9 307549.i −0.0570140 0.327340i
\(246\) 0 0
\(247\) −9990.77 17304.5i −0.0104197 0.0180475i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.78809e6 −1.79145 −0.895726 0.444606i \(-0.853344\pi\)
−0.895726 + 0.444606i \(0.853344\pi\)
\(252\) 0 0
\(253\) −675636. −0.663608
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 254462. + 440741.i 0.240320 + 0.416247i 0.960805 0.277224i \(-0.0894142\pi\)
−0.720485 + 0.693470i \(0.756081\pi\)
\(258\) 0 0
\(259\) −29752.5 82010.9i −0.0275597 0.0759665i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −168247. + 291412.i −0.149988 + 0.259787i −0.931223 0.364450i \(-0.881257\pi\)
0.781235 + 0.624237i \(0.214590\pi\)
\(264\) 0 0
\(265\) −304929. −0.266737
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 747765. 1.29517e6i 0.630064 1.09130i −0.357475 0.933923i \(-0.616362\pi\)
0.987538 0.157379i \(-0.0503045\pi\)
\(270\) 0 0
\(271\) 888484. + 1.53890e6i 0.734897 + 1.27288i 0.954768 + 0.297350i \(0.0961029\pi\)
−0.219871 + 0.975529i \(0.570564\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 224381. + 388640.i 0.178918 + 0.309896i
\(276\) 0 0
\(277\) −440632. + 763198.i −0.345046 + 0.597637i −0.985362 0.170474i \(-0.945470\pi\)
0.640316 + 0.768112i \(0.278803\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.13932e6 0.860756 0.430378 0.902649i \(-0.358380\pi\)
0.430378 + 0.902649i \(0.358380\pi\)
\(282\) 0 0
\(283\) 448733. 777228.i 0.333059 0.576876i −0.650051 0.759891i \(-0.725252\pi\)
0.983110 + 0.183015i \(0.0585857\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −532735. 94509.4i −0.381774 0.0677283i
\(288\) 0 0
\(289\) 416778. + 721881.i 0.293535 + 0.508418i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.84614e6 1.25631 0.628153 0.778090i \(-0.283811\pi\)
0.628153 + 0.778090i \(0.283811\pi\)
\(294\) 0 0
\(295\) −73674.9 −0.0492907
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 29566.5 + 51210.8i 0.0191259 + 0.0331271i
\(300\) 0 0
\(301\) 693252. + 122986.i 0.441037 + 0.0782418i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 467504. 809741.i 0.287764 0.498421i
\(306\) 0 0
\(307\) 1.38565e6 0.839089 0.419544 0.907735i \(-0.362190\pi\)
0.419544 + 0.907735i \(0.362190\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.15624e6 2.00267e6i 0.677871 1.17411i −0.297750 0.954644i \(-0.596236\pi\)
0.975621 0.219463i \(-0.0704305\pi\)
\(312\) 0 0
\(313\) 584400. + 1.01221e6i 0.337171 + 0.583996i 0.983899 0.178724i \(-0.0571968\pi\)
−0.646729 + 0.762720i \(0.723863\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 717166. + 1.24217e6i 0.400840 + 0.694276i 0.993828 0.110936i \(-0.0353849\pi\)
−0.592987 + 0.805212i \(0.702052\pi\)
\(318\) 0 0
\(319\) −339204. + 587519.i −0.186631 + 0.323255i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.08293e6 0.577554
\(324\) 0 0
\(325\) 19638.3 34014.5i 0.0103132 0.0178631i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −278659. 768105.i −0.141933 0.391229i
\(330\) 0 0
\(331\) 1.11709e6 + 1.93486e6i 0.560426 + 0.970686i 0.997459 + 0.0712406i \(0.0226958\pi\)
−0.437033 + 0.899445i \(0.643971\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 253452. 0.123391
\(336\) 0 0
\(337\) 3.08787e6 1.48110 0.740549 0.672002i \(-0.234565\pi\)
0.740549 + 0.672002i \(0.234565\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 192690. + 333749.i 0.0897373 + 0.155429i
\(342\) 0 0
\(343\) −1.88355e6 1.09535e6i −0.864454 0.502711i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.55877e6 + 2.69987e6i −0.694959 + 1.20370i 0.275236 + 0.961377i \(0.411244\pi\)
−0.970195 + 0.242327i \(0.922089\pi\)
\(348\) 0 0
\(349\) 613026. 0.269411 0.134706 0.990886i \(-0.456991\pi\)
0.134706 + 0.990886i \(0.456991\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.89185e6 3.27678e6i 0.808071 1.39962i −0.106127 0.994353i \(-0.533845\pi\)
0.914198 0.405268i \(-0.132822\pi\)
\(354\) 0 0
\(355\) −779724. 1.35052e6i −0.328375 0.568762i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.86107e6 + 3.22346e6i 0.762125 + 1.32004i 0.941753 + 0.336304i \(0.109177\pi\)
−0.179629 + 0.983734i \(0.557490\pi\)
\(360\) 0 0
\(361\) 237940. 412123.i 0.0960945 0.166441i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −530824. −0.208554
\(366\) 0 0
\(367\) −2.06898e6 + 3.58357e6i −0.801845 + 1.38884i 0.116555 + 0.993184i \(0.462815\pi\)
−0.918400 + 0.395652i \(0.870519\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.36974e6 + 1.62893e6i −0.516658 + 0.614424i
\(372\) 0 0
\(373\) −1.47209e6 2.54973e6i −0.547851 0.948905i −0.998422 0.0561644i \(-0.982113\pi\)
0.450571 0.892741i \(-0.351220\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 59375.7 0.0215157
\(378\) 0 0
\(379\) 2.97504e6 1.06388 0.531942 0.846781i \(-0.321462\pi\)
0.531942 + 0.846781i \(0.321462\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.03052e6 + 1.78491e6i 0.358971 + 0.621756i 0.987789 0.155796i \(-0.0497944\pi\)
−0.628818 + 0.777552i \(0.716461\pi\)
\(384\) 0 0
\(385\) −382739. 67899.5i −0.131598 0.0233461i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.04542e6 1.81072e6i 0.350281 0.606705i −0.636018 0.771675i \(-0.719419\pi\)
0.986299 + 0.164970i \(0.0527527\pi\)
\(390\) 0 0
\(391\) −3.20480e6 −1.06013
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 556817. 964435.i 0.179564 0.311014i
\(396\) 0 0
\(397\) −585647. 1.01437e6i −0.186492 0.323013i 0.757586 0.652735i \(-0.226378\pi\)
−0.944078 + 0.329722i \(0.893045\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.54574e6 + 2.67731e6i 0.480039 + 0.831452i 0.999738 0.0228979i \(-0.00728925\pi\)
−0.519699 + 0.854349i \(0.673956\pi\)
\(402\) 0 0
\(403\) 16864.6 29210.4i 0.00517266 0.00895930i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −108630. −0.0325059
\(408\) 0 0
\(409\) 2.17426e6 3.76593e6i 0.642693 1.11318i −0.342136 0.939650i \(-0.611150\pi\)
0.984829 0.173527i \(-0.0555163\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −330947. + 393572.i −0.0954737 + 0.113540i
\(414\) 0 0
\(415\) −571932. 990616.i −0.163014 0.282348i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.13660e6 −0.872818 −0.436409 0.899748i \(-0.643750\pi\)
−0.436409 + 0.899748i \(0.643750\pi\)
\(420\) 0 0
\(421\) 6.02560e6 1.65690 0.828448 0.560066i \(-0.189224\pi\)
0.828448 + 0.560066i \(0.189224\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.06432e6 + 1.84346e6i 0.285826 + 0.495065i
\(426\) 0 0
\(427\) −2.22562e6 6.13476e6i −0.590719 1.62828i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.14931e6 + 1.99067e6i −0.298020 + 0.516186i −0.975683 0.219187i \(-0.929660\pi\)
0.677663 + 0.735373i \(0.262993\pi\)
\(432\) 0 0
\(433\) −5.62982e6 −1.44303 −0.721515 0.692399i \(-0.756554\pi\)
−0.721515 + 0.692399i \(0.756554\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.95971e6 5.12637e6i 0.741388 1.28412i
\(438\) 0 0
\(439\) 2.72482e6 + 4.71952e6i 0.674801 + 1.16879i 0.976527 + 0.215396i \(0.0691041\pi\)
−0.301725 + 0.953395i \(0.597563\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.85467e6 + 4.94443e6i 0.691108 + 1.19703i 0.971475 + 0.237142i \(0.0762105\pi\)
−0.280367 + 0.959893i \(0.590456\pi\)
\(444\) 0 0
\(445\) 392832. 680405.i 0.0940387 0.162880i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5.38234e6 −1.25996 −0.629978 0.776613i \(-0.716936\pi\)
−0.629978 + 0.776613i \(0.716936\pi\)
\(450\) 0 0
\(451\) −336851. + 583442.i −0.0779823 + 0.135069i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 11602.5 + 31981.5i 0.00262738 + 0.00724220i
\(456\) 0 0
\(457\) 3.19525e6 + 5.53434e6i 0.715673 + 1.23958i 0.962699 + 0.270573i \(0.0872133\pi\)
−0.247026 + 0.969009i \(0.579453\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −7.34511e6 −1.60970 −0.804851 0.593476i \(-0.797755\pi\)
−0.804851 + 0.593476i \(0.797755\pi\)
\(462\) 0 0
\(463\) −4.63416e6 −1.00466 −0.502329 0.864677i \(-0.667523\pi\)
−0.502329 + 0.864677i \(0.667523\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3.81598e6 6.60946e6i −0.809680 1.40241i −0.913086 0.407768i \(-0.866307\pi\)
0.103406 0.994639i \(-0.467026\pi\)
\(468\) 0 0
\(469\) 1.13850e6 1.35394e6i 0.239002 0.284229i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 438346. 759238.i 0.0900875 0.156036i
\(474\) 0 0
\(475\) −3.93172e6 −0.799556
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.80631e6 8.32477e6i 0.957135 1.65781i 0.227728 0.973725i \(-0.426870\pi\)
0.729406 0.684081i \(-0.239796\pi\)
\(480\) 0 0
\(481\) 4753.74 + 8233.72i 0.000936856 + 0.00162268i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −414562. 718042.i −0.0800267 0.138610i
\(486\) 0 0
\(487\) −1.40112e6 + 2.42680e6i −0.267702 + 0.463673i −0.968268 0.249914i \(-0.919598\pi\)
0.700566 + 0.713588i \(0.252931\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4.82008e6 −0.902299 −0.451149 0.892448i \(-0.648986\pi\)
−0.451149 + 0.892448i \(0.648986\pi\)
\(492\) 0 0
\(493\) −1.60897e6 + 2.78682e6i −0.298148 + 0.516407i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.07170e7 1.90125e6i −1.94618 0.345261i
\(498\) 0 0
\(499\) −2.29829e6 3.98076e6i −0.413194 0.715673i 0.582043 0.813158i \(-0.302253\pi\)
−0.995237 + 0.0974853i \(0.968920\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −1.80055e6 −0.317311 −0.158656 0.987334i \(-0.550716\pi\)
−0.158656 + 0.987334i \(0.550716\pi\)
\(504\) 0 0
\(505\) 2.07892e6 0.362752
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.41602e6 4.18467e6i −0.413339 0.715924i 0.581913 0.813251i \(-0.302304\pi\)
−0.995253 + 0.0973263i \(0.968971\pi\)
\(510\) 0 0
\(511\) −2.38446e6 + 2.83566e6i −0.403959 + 0.480400i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.55048e6 + 2.68552e6i −0.257602 + 0.446180i
\(516\) 0 0
\(517\) −1.01741e6 −0.167406
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.40562e6 2.43461e6i 0.226869 0.392948i −0.730010 0.683437i \(-0.760484\pi\)
0.956878 + 0.290489i \(0.0938178\pi\)
\(522\) 0 0
\(523\) 1.22715e6 + 2.12548e6i 0.196174 + 0.339784i 0.947285 0.320392i \(-0.103815\pi\)
−0.751110 + 0.660177i \(0.770481\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 914000. + 1.58309e6i 0.143357 + 0.248302i
\(528\) 0 0
\(529\) −5.54076e6 + 9.59687e6i −0.860855 + 1.49104i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 58963.7 0.00899015
\(534\) 0 0
\(535\) 956445. 1.65661e6i 0.144469 0.250228i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.08198e6 + 1.73959e6i −0.308677 + 0.257914i
\(540\) 0 0
\(541\) 579232. + 1.00326e6i 0.0850862 + 0.147374i 0.905428 0.424500i \(-0.139550\pi\)
−0.820342 + 0.571874i \(0.806217\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.55994e6 −0.369180
\(546\) 0 0
\(547\) 4.63638e6 0.662538 0.331269 0.943536i \(-0.392523\pi\)
0.331269 + 0.943536i \(0.392523\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.97185e6 5.14740e6i −0.417012 0.722285i
\(552\) 0 0
\(553\) −2.65080e6 7.30676e6i −0.368608 1.01604i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 135916. 235414.i 0.0185624 0.0321510i −0.856595 0.515989i \(-0.827424\pi\)
0.875157 + 0.483838i \(0.160758\pi\)
\(558\) 0 0
\(559\) −76730.0 −0.0103857
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.69122e6 2.92928e6i 0.224869 0.389485i −0.731411 0.681937i \(-0.761138\pi\)
0.956280 + 0.292452i \(0.0944712\pi\)
\(564\) 0 0
\(565\) −1.20702e6 2.09063e6i −0.159072 0.275522i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.56130e6 + 1.13645e7i 0.849590 + 1.47153i 0.881574 + 0.472045i \(0.156484\pi\)
−0.0319843 + 0.999488i \(0.510183\pi\)
\(570\) 0 0
\(571\) 7.35811e6 1.27446e7i 0.944443 1.63582i 0.187581 0.982249i \(-0.439935\pi\)
0.756862 0.653575i \(-0.226731\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.16355e7 1.46762
\(576\) 0 0
\(577\) 1.94148e6 3.36273e6i 0.242769 0.420487i −0.718733 0.695286i \(-0.755278\pi\)
0.961502 + 0.274798i \(0.0886111\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7.86099e6 1.39457e6i −0.966134 0.171396i
\(582\) 0 0
\(583\) 1.32504e6 + 2.29503e6i 0.161457 + 0.279651i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.97913e6 −0.596428 −0.298214 0.954499i \(-0.596391\pi\)
−0.298214 + 0.954499i \(0.596391\pi\)
\(588\) 0 0
\(589\) −3.37641e6 −0.401021
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 7.66344e6 + 1.32735e7i 0.894926 + 1.55006i 0.833896 + 0.551921i \(0.186105\pi\)
0.0610292 + 0.998136i \(0.480562\pi\)
\(594\) 0 0
\(595\) −1.81547e6 322073.i −0.210231 0.0372959i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −3.31480e6 + 5.74141e6i −0.377477 + 0.653810i −0.990694 0.136104i \(-0.956542\pi\)
0.613217 + 0.789914i \(0.289875\pi\)
\(600\) 0 0
\(601\) −1.45010e6 −0.163762 −0.0818808 0.996642i \(-0.526093\pi\)
−0.0818808 + 0.996642i \(0.526093\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.25370e6 2.17147e6i 0.139253 0.241194i
\(606\) 0 0
\(607\) −1.95555e6 3.38711e6i −0.215425 0.373128i 0.737979 0.674824i \(-0.235780\pi\)
−0.953404 + 0.301696i \(0.902447\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 44523.1 + 77116.2i 0.00482483 + 0.00835685i
\(612\) 0 0
\(613\) −5.88765e6 + 1.01977e7i −0.632835 + 1.09610i 0.354134 + 0.935195i \(0.384776\pi\)
−0.986969 + 0.160908i \(0.948558\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.61462e6 0.488004 0.244002 0.969775i \(-0.421540\pi\)
0.244002 + 0.969775i \(0.421540\pi\)
\(618\) 0 0
\(619\) 2.83733e6 4.91440e6i 0.297634 0.515518i −0.677960 0.735099i \(-0.737136\pi\)
0.975594 + 0.219581i \(0.0704690\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.87013e6 5.15489e6i −0.193042 0.532107i
\(624\) 0 0
\(625\) −3.32511e6 5.75926e6i −0.340491 0.589748i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −515271. −0.0519289
\(630\) 0 0
\(631\) 5.67894e6 0.567798 0.283899 0.958854i \(-0.408372\pi\)
0.283899 + 0.958854i \(0.408372\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.25925e6 + 3.91313e6i 0.222346 + 0.385114i
\(636\) 0 0
\(637\) 222964. + 81680.2i 0.0217714 + 0.00797569i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.05369e6 + 1.82504e6i −0.101290 + 0.175439i −0.912216 0.409709i \(-0.865630\pi\)
0.810926 + 0.585148i \(0.198964\pi\)
\(642\) 0 0
\(643\) −2.30987e6 −0.220323 −0.110162 0.993914i \(-0.535137\pi\)
−0.110162 + 0.993914i \(0.535137\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.93033e6 8.53958e6i 0.463036 0.802003i −0.536074 0.844171i \(-0.680093\pi\)
0.999111 + 0.0421683i \(0.0134266\pi\)
\(648\) 0 0
\(649\) 320147. + 554510.i 0.0298358 + 0.0516771i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.01545e6 + 8.68701e6i 0.460285 + 0.797237i 0.998975 0.0452673i \(-0.0144139\pi\)
−0.538690 + 0.842504i \(0.681081\pi\)
\(654\) 0 0
\(655\) 1.80483e6 3.12605e6i 0.164374 0.284704i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.42828e7 1.28115 0.640575 0.767895i \(-0.278696\pi\)
0.640575 + 0.767895i \(0.278696\pi\)
\(660\) 0 0
\(661\) 9.82097e6 1.70104e7i 0.874280 1.51430i 0.0167532 0.999860i \(-0.494667\pi\)
0.857527 0.514438i \(-0.172000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.19182e6 2.60657e6i 0.192199 0.228568i
\(666\) 0 0
\(667\) 8.79486e6 + 1.52331e7i 0.765445 + 1.32579i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −8.12596e6 −0.696736
\(672\) 0 0
\(673\) −9.00150e6 −0.766086 −0.383043 0.923731i \(-0.625124\pi\)
−0.383043 + 0.923731i \(0.625124\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.71181e6 + 1.16252e7i 0.562818 + 0.974830i 0.997249 + 0.0741247i \(0.0236163\pi\)
−0.434431 + 0.900705i \(0.643050\pi\)
\(678\) 0 0
\(679\) −5.69800e6 1.01085e6i −0.474294 0.0841418i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −4.00840e6 + 6.94276e6i −0.328791 + 0.569483i −0.982272 0.187460i \(-0.939974\pi\)
0.653481 + 0.756943i \(0.273308\pi\)
\(684\) 0 0
\(685\) 57463.5 0.00467913
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 115970. 200866.i 0.00930673 0.0161197i
\(690\) 0 0
\(691\) 1.20987e7 + 2.09555e7i 0.963923 + 1.66956i 0.712481 + 0.701691i \(0.247572\pi\)
0.251442 + 0.967872i \(0.419095\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −209894. 363547.i −0.0164831 0.0285495i
\(696\) 0 0
\(697\) −1.59781e6 + 2.76749e6i −0.124578 + 0.215776i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.56268e6 0.120109 0.0600543 0.998195i \(-0.480873\pi\)
0.0600543 + 0.998195i \(0.480873\pi\)
\(702\) 0 0
\(703\) 475866. 824224.i 0.0363158 0.0629009i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9.33851e6 1.11056e7i 0.702634 0.835592i
\(708\) 0 0
\(709\) 9.76950e6 + 1.69213e7i 0.729889 + 1.26420i 0.956930 + 0.290320i \(0.0937616\pi\)
−0.227041 + 0.973885i \(0.572905\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9.99210e6 0.736093
\(714\) 0 0
\(715\) 42362.0 0.00309892
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4.05095e6 7.01645e6i −0.292237 0.506169i 0.682102 0.731257i \(-0.261066\pi\)
−0.974338 + 0.225089i \(0.927733\pi\)
\(720\) 0 0
\(721\) 7.38129e6 + 2.03460e7i 0.528804 + 1.45761i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5.84161e6 1.01180e7i 0.412750 0.714904i
\(726\) 0 0
\(727\) 2.52759e7 1.77366 0.886829 0.462098i \(-0.152903\pi\)
0.886829 + 0.462098i \(0.152903\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.07924e6 3.60135e6i 0.143917 0.249271i
\(732\) 0 0
\(733\) −1.37207e7 2.37650e7i −0.943228 1.63372i −0.759260 0.650787i \(-0.774439\pi\)
−0.183969 0.982932i \(-0.558894\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.10135e6 1.90759e6i −0.0746888 0.129365i
\(738\) 0 0
\(739\) 3.26785e6 5.66008e6i 0.220115 0.381251i −0.734727 0.678362i \(-0.762690\pi\)
0.954843 + 0.297111i \(0.0960233\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.46784e7 1.64000 0.820001 0.572362i \(-0.193973\pi\)
0.820001 + 0.572362i \(0.193973\pi\)
\(744\) 0 0
\(745\) −3.27646e6 + 5.67499e6i −0.216279 + 0.374606i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −4.55329e6 1.25508e7i −0.296565 0.817463i
\(750\) 0 0
\(751\) 1.63911e6 + 2.83902e6i 0.106049 + 0.183683i 0.914166 0.405339i \(-0.132847\pi\)
−0.808117 + 0.589022i \(0.799513\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.69507e6 0.172069
\(756\) 0 0
\(757\) 3.68090e6 0.233461 0.116731 0.993164i \(-0.462759\pi\)
0.116731 + 0.993164i \(0.462759\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.05099e7 + 1.82037e7i 0.657866 + 1.13946i 0.981167 + 0.193162i \(0.0618742\pi\)
−0.323301 + 0.946296i \(0.604792\pi\)
\(762\) 0 0
\(763\) −1.14992e7 + 1.36752e7i −0.715084 + 0.850399i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 28019.9 48531.9i 0.00171980 0.00297878i
\(768\) 0 0
\(769\) −4.15418e6 −0.253320 −0.126660 0.991946i \(-0.540426\pi\)
−0.126660 + 0.991946i \(0.540426\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 731741. 1.26741e6i 0.0440462 0.0762903i −0.843162 0.537660i \(-0.819308\pi\)
0.887208 + 0.461370i \(0.152642\pi\)
\(774\) 0 0
\(775\) −3.31841e6 5.74765e6i −0.198461 0.343745i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.95123e6 5.11169e6i −0.174245 0.301801i
\(780\) 0 0
\(781\) −6.77642e6 + 1.17371e7i −0.397533 + 0.688547i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4.04726e6 −0.234416
\(786\) 0 0
\(787\) 1.00855e7 1.74687e7i 0.580446 1.00536i −0.414980 0.909830i \(-0.636212\pi\)
0.995426 0.0955317i \(-0.0304551\pi\)
\(788\) 0 0
\(789\) 0