Properties

Label 252.6.k.d.37.1
Level $252$
Weight $6$
Character 252.37
Analytic conductor $40.417$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [252,6,Mod(37,252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("252.37"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(252, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 252.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.4167225929\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{109})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 28x^{2} + 27x + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.1
Root \(-2.36008 + 4.08777i\) of defining polynomial
Character \(\chi\) \(=\) 252.37
Dual form 252.6.k.d.109.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-20.8209 + 36.0629i) q^{5} +(28.0000 - 126.582i) q^{7} +(55.3768 + 95.9154i) q^{11} +179.135 q^{13} +(-177.784 - 307.930i) q^{17} +(-977.981 + 1693.91i) q^{19} +(773.363 - 1339.50i) q^{23} +(695.479 + 1204.60i) q^{25} -6273.94 q^{29} +(-3002.09 - 5199.77i) q^{31} +(3981.93 + 3645.31i) q^{35} +(4844.23 - 8390.44i) q^{37} -10577.3 q^{41} +6716.00 q^{43} +(13620.4 - 23591.2i) q^{47} +(-15239.0 - 7088.59i) q^{49} +(-16339.7 - 28301.2i) q^{53} -4611.98 q^{55} +(-246.332 - 426.659i) q^{59} +(-20276.1 + 35119.3i) q^{61} +(-3729.75 + 6460.12i) q^{65} +(3844.07 + 6658.13i) q^{67} -77879.3 q^{71} +(-36958.0 - 64013.1i) q^{73} +(13691.7 - 4324.07i) q^{77} +(21966.6 - 38047.2i) q^{79} -41194.2 q^{83} +14806.5 q^{85} +(32862.3 - 56919.1i) q^{89} +(5015.77 - 22675.2i) q^{91} +(-40724.9 - 70537.7i) q^{95} -68534.5 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 42 q^{5} + 112 q^{7} + 660 q^{11} - 1288 q^{13} - 210 q^{17} - 3724 q^{19} + 24 q^{23} - 2480 q^{25} - 11064 q^{29} - 2800 q^{31} + 28644 q^{35} + 13238 q^{37} - 8232 q^{41} + 26864 q^{43} + 8064 q^{47}+ \cdots + 16520 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −20.8209 + 36.0629i −0.372456 + 0.645113i −0.989943 0.141469i \(-0.954818\pi\)
0.617487 + 0.786581i \(0.288151\pi\)
\(6\) 0 0
\(7\) 28.0000 126.582i 0.215980 0.976398i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 55.3768 + 95.9154i 0.137989 + 0.239005i 0.926735 0.375714i \(-0.122603\pi\)
−0.788746 + 0.614719i \(0.789269\pi\)
\(12\) 0 0
\(13\) 179.135 0.293982 0.146991 0.989138i \(-0.453041\pi\)
0.146991 + 0.989138i \(0.453041\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −177.784 307.930i −0.149200 0.258422i 0.781732 0.623615i \(-0.214337\pi\)
−0.930932 + 0.365192i \(0.881003\pi\)
\(18\) 0 0
\(19\) −977.981 + 1693.91i −0.621508 + 1.07648i 0.367697 + 0.929946i \(0.380146\pi\)
−0.989205 + 0.146538i \(0.953187\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 773.363 1339.50i 0.304834 0.527988i −0.672390 0.740197i \(-0.734732\pi\)
0.977224 + 0.212209i \(0.0680657\pi\)
\(24\) 0 0
\(25\) 695.479 + 1204.60i 0.222553 + 0.385473i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6273.94 −1.38531 −0.692653 0.721271i \(-0.743558\pi\)
−0.692653 + 0.721271i \(0.743558\pi\)
\(30\) 0 0
\(31\) −3002.09 5199.77i −0.561073 0.971806i −0.997403 0.0720199i \(-0.977055\pi\)
0.436331 0.899786i \(-0.356278\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3981.93 + 3645.31i 0.549444 + 0.502996i
\(36\) 0 0
\(37\) 4844.23 8390.44i 0.581728 1.00758i −0.413547 0.910483i \(-0.635710\pi\)
0.995275 0.0970996i \(-0.0309565\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −10577.3 −0.982686 −0.491343 0.870966i \(-0.663494\pi\)
−0.491343 + 0.870966i \(0.663494\pi\)
\(42\) 0 0
\(43\) 6716.00 0.553910 0.276955 0.960883i \(-0.410675\pi\)
0.276955 + 0.960883i \(0.410675\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 13620.4 23591.2i 0.899384 1.55778i 0.0711012 0.997469i \(-0.477349\pi\)
0.828283 0.560310i \(-0.189318\pi\)
\(48\) 0 0
\(49\) −15239.0 7088.59i −0.906706 0.421764i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −16339.7 28301.2i −0.799014 1.38393i −0.920259 0.391311i \(-0.872022\pi\)
0.121244 0.992623i \(-0.461311\pi\)
\(54\) 0 0
\(55\) −4611.98 −0.205580
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −246.332 426.659i −0.00921277 0.0159570i 0.861382 0.507957i \(-0.169599\pi\)
−0.870595 + 0.492000i \(0.836266\pi\)
\(60\) 0 0
\(61\) −20276.1 + 35119.3i −0.697686 + 1.20843i 0.271580 + 0.962416i \(0.412454\pi\)
−0.969267 + 0.246012i \(0.920880\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3729.75 + 6460.12i −0.109495 + 0.189652i
\(66\) 0 0
\(67\) 3844.07 + 6658.13i 0.104618 + 0.181203i 0.913582 0.406655i \(-0.133305\pi\)
−0.808964 + 0.587858i \(0.799971\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −77879.3 −1.83348 −0.916740 0.399484i \(-0.869189\pi\)
−0.916740 + 0.399484i \(0.869189\pi\)
\(72\) 0 0
\(73\) −36958.0 64013.1i −0.811710 1.40592i −0.911667 0.410931i \(-0.865204\pi\)
0.0999567 0.994992i \(-0.468130\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 13691.7 4324.07i 0.263167 0.0831125i
\(78\) 0 0
\(79\) 21966.6 38047.2i 0.395999 0.685891i −0.597229 0.802071i \(-0.703732\pi\)
0.993228 + 0.116180i \(0.0370650\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −41194.2 −0.656359 −0.328179 0.944615i \(-0.606435\pi\)
−0.328179 + 0.944615i \(0.606435\pi\)
\(84\) 0 0
\(85\) 14806.5 0.222282
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 32862.3 56919.1i 0.439767 0.761699i −0.557904 0.829905i \(-0.688394\pi\)
0.997671 + 0.0682064i \(0.0217277\pi\)
\(90\) 0 0
\(91\) 5015.77 22675.2i 0.0634942 0.287044i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −40724.9 70537.7i −0.462969 0.801885i
\(96\) 0 0
\(97\) −68534.5 −0.739571 −0.369786 0.929117i \(-0.620569\pi\)
−0.369786 + 0.929117i \(0.620569\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −58679.2 101635.i −0.572375 0.991383i −0.996321 0.0856959i \(-0.972689\pi\)
0.423946 0.905688i \(-0.360645\pi\)
\(102\) 0 0
\(103\) 5409.51 9369.55i 0.0502418 0.0870213i −0.839811 0.542879i \(-0.817334\pi\)
0.890053 + 0.455858i \(0.150667\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 55200.1 95609.3i 0.466101 0.807311i −0.533149 0.846021i \(-0.678992\pi\)
0.999250 + 0.0387102i \(0.0123249\pi\)
\(108\) 0 0
\(109\) −6130.59 10618.5i −0.0494238 0.0856045i 0.840255 0.542191i \(-0.182405\pi\)
−0.889679 + 0.456587i \(0.849072\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 122314. 0.901117 0.450558 0.892747i \(-0.351225\pi\)
0.450558 + 0.892747i \(0.351225\pi\)
\(114\) 0 0
\(115\) 32204.2 + 55779.4i 0.227075 + 0.393305i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −43956.4 + 13882.2i −0.284547 + 0.0898648i
\(120\) 0 0
\(121\) 74392.3 128851.i 0.461918 0.800065i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −188053. −1.07648
\(126\) 0 0
\(127\) −169073. −0.930174 −0.465087 0.885265i \(-0.653977\pi\)
−0.465087 + 0.885265i \(0.653977\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −188725. + 326882.i −0.960842 + 1.66423i −0.240449 + 0.970662i \(0.577295\pi\)
−0.720393 + 0.693566i \(0.756039\pi\)
\(132\) 0 0
\(133\) 187035. + 171224.i 0.916843 + 0.839337i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 158315. + 274209.i 0.720643 + 1.24819i 0.960742 + 0.277442i \(0.0894867\pi\)
−0.240099 + 0.970748i \(0.577180\pi\)
\(138\) 0 0
\(139\) −229447. −1.00727 −0.503634 0.863917i \(-0.668004\pi\)
−0.503634 + 0.863917i \(0.668004\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9919.90 + 17181.8i 0.0405665 + 0.0702632i
\(144\) 0 0
\(145\) 130629. 226257.i 0.515965 0.893678i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 78750.8 136400.i 0.290596 0.503326i −0.683355 0.730086i \(-0.739480\pi\)
0.973951 + 0.226760i \(0.0728132\pi\)
\(150\) 0 0
\(151\) 73392.3 + 127119.i 0.261944 + 0.453700i 0.966758 0.255691i \(-0.0823031\pi\)
−0.704815 + 0.709392i \(0.748970\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 250025. 0.835899
\(156\) 0 0
\(157\) 163742. + 283610.i 0.530166 + 0.918275i 0.999381 + 0.0351904i \(0.0112038\pi\)
−0.469215 + 0.883084i \(0.655463\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −147903. 135400.i −0.449689 0.411674i
\(162\) 0 0
\(163\) −174093. + 301538.i −0.513231 + 0.888942i 0.486651 + 0.873596i \(0.338218\pi\)
−0.999882 + 0.0153459i \(0.995115\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 547771. 1.51987 0.759937 0.649996i \(-0.225230\pi\)
0.759937 + 0.649996i \(0.225230\pi\)
\(168\) 0 0
\(169\) −339204. −0.913574
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 91270.5 158085.i 0.231854 0.401583i −0.726500 0.687167i \(-0.758854\pi\)
0.958354 + 0.285584i \(0.0921874\pi\)
\(174\) 0 0
\(175\) 171955. 54306.1i 0.424442 0.134046i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 68061.5 + 117886.i 0.158770 + 0.274998i 0.934425 0.356159i \(-0.115914\pi\)
−0.775655 + 0.631157i \(0.782580\pi\)
\(180\) 0 0
\(181\) 591381. 1.34175 0.670874 0.741571i \(-0.265919\pi\)
0.670874 + 0.741571i \(0.265919\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 201722. + 349394.i 0.433336 + 0.750560i
\(186\) 0 0
\(187\) 19690.2 34104.4i 0.0411761 0.0713192i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −220596. + 382083.i −0.437536 + 0.757834i −0.997499 0.0706837i \(-0.977482\pi\)
0.559963 + 0.828517i \(0.310815\pi\)
\(192\) 0 0
\(193\) −224188. 388304.i −0.433230 0.750376i 0.563920 0.825830i \(-0.309293\pi\)
−0.997149 + 0.0754539i \(0.975959\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 542019. 0.995059 0.497530 0.867447i \(-0.334241\pi\)
0.497530 + 0.867447i \(0.334241\pi\)
\(198\) 0 0
\(199\) 98979.3 + 171437.i 0.177179 + 0.306883i 0.940913 0.338648i \(-0.109970\pi\)
−0.763734 + 0.645531i \(0.776636\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −175670. + 794168.i −0.299198 + 1.35261i
\(204\) 0 0
\(205\) 220229. 381448.i 0.366007 0.633943i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −216630. −0.343046
\(210\) 0 0
\(211\) 1.13658e6 1.75749 0.878745 0.477292i \(-0.158382\pi\)
0.878745 + 0.477292i \(0.158382\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −139833. + 242198.i −0.206307 + 0.357335i
\(216\) 0 0
\(217\) −742255. + 234417.i −1.07005 + 0.337940i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −31847.2 55161.0i −0.0438623 0.0759717i
\(222\) 0 0
\(223\) −497078. −0.669364 −0.334682 0.942331i \(-0.608629\pi\)
−0.334682 + 0.942331i \(0.608629\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 467270. + 809335.i 0.601870 + 1.04247i 0.992538 + 0.121938i \(0.0389109\pi\)
−0.390668 + 0.920532i \(0.627756\pi\)
\(228\) 0 0
\(229\) −526030. + 911110.i −0.662860 + 1.14811i 0.317001 + 0.948425i \(0.397324\pi\)
−0.979861 + 0.199682i \(0.936009\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 207291. 359039.i 0.250145 0.433263i −0.713421 0.700736i \(-0.752855\pi\)
0.963565 + 0.267473i \(0.0861885\pi\)
\(234\) 0 0
\(235\) 567179. + 982382.i 0.669962 + 1.16041i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −481799. −0.545596 −0.272798 0.962071i \(-0.587949\pi\)
−0.272798 + 0.962071i \(0.587949\pi\)
\(240\) 0 0
\(241\) −14480.5 25081.0i −0.0160598 0.0278165i 0.857884 0.513844i \(-0.171779\pi\)
−0.873944 + 0.486027i \(0.838446\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 572925. 401971.i 0.609793 0.427839i
\(246\) 0 0
\(247\) −175190. + 303439.i −0.182712 + 0.316467i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −553855. −0.554896 −0.277448 0.960741i \(-0.589489\pi\)
−0.277448 + 0.960741i \(0.589489\pi\)
\(252\) 0 0
\(253\) 171305. 0.168256
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 939844. 1.62786e6i 0.887612 1.53739i 0.0449211 0.998991i \(-0.485696\pi\)
0.842691 0.538398i \(-0.180970\pi\)
\(258\) 0 0
\(259\) −926441. 848124.i −0.858160 0.785615i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −541685. 938226.i −0.482900 0.836408i 0.516907 0.856042i \(-0.327083\pi\)
−0.999807 + 0.0196337i \(0.993750\pi\)
\(264\) 0 0
\(265\) 1.36083e6 1.19039
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 554068. + 959673.i 0.466855 + 0.808617i 0.999283 0.0378586i \(-0.0120537\pi\)
−0.532428 + 0.846475i \(0.678720\pi\)
\(270\) 0 0
\(271\) 161004. 278867.i 0.133172 0.230660i −0.791726 0.610877i \(-0.790817\pi\)
0.924898 + 0.380216i \(0.124150\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −77026.7 + 133414.i −0.0614200 + 0.106383i
\(276\) 0 0
\(277\) −728732. 1.26220e6i −0.570648 0.988391i −0.996500 0.0835984i \(-0.973359\pi\)
0.425851 0.904793i \(-0.359975\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1.03123e6 −0.779092 −0.389546 0.921007i \(-0.627368\pi\)
−0.389546 + 0.921007i \(0.627368\pi\)
\(282\) 0 0
\(283\) −39832.4 68991.8i −0.0295645 0.0512072i 0.850865 0.525385i \(-0.176079\pi\)
−0.880429 + 0.474178i \(0.842745\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −296164. + 1.33889e6i −0.212240 + 0.959493i
\(288\) 0 0
\(289\) 646714. 1.12014e6i 0.455479 0.788912i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.44146e6 −0.980920 −0.490460 0.871464i \(-0.663171\pi\)
−0.490460 + 0.871464i \(0.663171\pi\)
\(294\) 0 0
\(295\) 20515.4 0.0137254
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 138536. 239952.i 0.0896159 0.155219i
\(300\) 0 0
\(301\) 188048. 850125.i 0.119633 0.540837i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −844335. 1.46243e6i −0.519715 0.900173i
\(306\) 0 0
\(307\) −1.71962e6 −1.04132 −0.520662 0.853763i \(-0.674315\pi\)
−0.520662 + 0.853763i \(0.674315\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −79804.7 138226.i −0.0467873 0.0810379i 0.841683 0.539971i \(-0.181565\pi\)
−0.888471 + 0.458933i \(0.848232\pi\)
\(312\) 0 0
\(313\) −226308. + 391978.i −0.130569 + 0.226152i −0.923896 0.382644i \(-0.875014\pi\)
0.793327 + 0.608796i \(0.208347\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 913154. 1.58163e6i 0.510382 0.884008i −0.489545 0.871978i \(-0.662837\pi\)
0.999928 0.0120304i \(-0.00382947\pi\)
\(318\) 0 0
\(319\) −347431. 601768.i −0.191158 0.331095i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 695477. 0.370917
\(324\) 0 0
\(325\) 124584. + 215786.i 0.0654267 + 0.113322i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.60485e6 2.38465e6i −1.32676 1.21461i
\(330\) 0 0
\(331\) −1.04106e6 + 1.80317e6i −0.522283 + 0.904620i 0.477381 + 0.878696i \(0.341586\pi\)
−0.999664 + 0.0259240i \(0.991747\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −320149. −0.155862
\(336\) 0 0
\(337\) 329493. 0.158041 0.0790207 0.996873i \(-0.474821\pi\)
0.0790207 + 0.996873i \(0.474821\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 332492. 575893.i 0.154844 0.268198i
\(342\) 0 0
\(343\) −1.32398e6 + 1.73050e6i −0.607640 + 0.794213i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −621590. 1.07663e6i −0.277128 0.480000i 0.693542 0.720416i \(-0.256049\pi\)
−0.970670 + 0.240417i \(0.922716\pi\)
\(348\) 0 0
\(349\) −1.07921e6 −0.474287 −0.237143 0.971475i \(-0.576211\pi\)
−0.237143 + 0.971475i \(0.576211\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −263261. 455981.i −0.112447 0.194764i 0.804309 0.594211i \(-0.202536\pi\)
−0.916756 + 0.399447i \(0.869202\pi\)
\(354\) 0 0
\(355\) 1.62152e6 2.80855e6i 0.682891 1.18280i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 713788. 1.23632e6i 0.292303 0.506283i −0.682051 0.731305i \(-0.738912\pi\)
0.974354 + 0.225021i \(0.0722452\pi\)
\(360\) 0 0
\(361\) −674846. 1.16887e6i −0.272544 0.472060i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.07799e6 1.20930
\(366\) 0 0
\(367\) 985646. + 1.70719e6i 0.381993 + 0.661632i 0.991347 0.131267i \(-0.0419045\pi\)
−0.609354 + 0.792898i \(0.708571\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.03993e6 + 1.27588e6i −1.52384 + 0.481254i
\(372\) 0 0
\(373\) 1.32258e6 2.29078e6i 0.492211 0.852535i −0.507749 0.861505i \(-0.669522\pi\)
0.999960 + 0.00897066i \(0.00285549\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.12388e6 −0.407255
\(378\) 0 0
\(379\) −1.17483e6 −0.420123 −0.210062 0.977688i \(-0.567366\pi\)
−0.210062 + 0.977688i \(0.567366\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.95438e6 + 3.38509e6i −0.680788 + 1.17916i 0.293952 + 0.955820i \(0.405029\pi\)
−0.974741 + 0.223340i \(0.928304\pi\)
\(384\) 0 0
\(385\) −129135. + 583794.i −0.0444011 + 0.200728i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 97739.7 + 169290.i 0.0327489 + 0.0567228i 0.881935 0.471370i \(-0.156240\pi\)
−0.849186 + 0.528093i \(0.822907\pi\)
\(390\) 0 0
\(391\) −549965. −0.181925
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 914728. + 1.58436e6i 0.294985 + 0.510928i
\(396\) 0 0
\(397\) 1.65213e6 2.86157e6i 0.526099 0.911229i −0.473439 0.880827i \(-0.656988\pi\)
0.999538 0.0304029i \(-0.00967905\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.19319e6 3.79872e6i 0.681107 1.17971i −0.293536 0.955948i \(-0.594832\pi\)
0.974643 0.223764i \(-0.0718346\pi\)
\(402\) 0 0
\(403\) −537778. 931459.i −0.164946 0.285694i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.07303e6 0.321089
\(408\) 0 0
\(409\) 1.60722e6 + 2.78379e6i 0.475081 + 0.822865i 0.999593 0.0285384i \(-0.00908528\pi\)
−0.524511 + 0.851403i \(0.675752\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −60904.6 + 19234.7i −0.0175701 + 0.00554894i
\(414\) 0 0
\(415\) 857702. 1.48558e6i 0.244465 0.423425i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4.48815e6 −1.24891 −0.624457 0.781059i \(-0.714680\pi\)
−0.624457 + 0.781059i \(0.714680\pi\)
\(420\) 0 0
\(421\) −4.05150e6 −1.11406 −0.557032 0.830491i \(-0.688060\pi\)
−0.557032 + 0.830491i \(0.688060\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 247289. 428318.i 0.0664100 0.115025i
\(426\) 0 0
\(427\) 3.87774e6 + 3.54993e6i 1.02922 + 0.942215i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.41541e6 + 2.45156e6i 0.367019 + 0.635696i 0.989098 0.147259i \(-0.0470449\pi\)
−0.622079 + 0.782955i \(0.713712\pi\)
\(432\) 0 0
\(433\) −3.39735e6 −0.870804 −0.435402 0.900236i \(-0.643394\pi\)
−0.435402 + 0.900236i \(0.643394\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.51267e6 + 2.62002e6i 0.378914 + 0.656297i
\(438\) 0 0
\(439\) −1.69631e6 + 2.93809e6i −0.420091 + 0.727618i −0.995948 0.0899319i \(-0.971335\pi\)
0.575857 + 0.817550i \(0.304668\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.33478e6 4.04397e6i 0.565246 0.979035i −0.431781 0.901979i \(-0.642115\pi\)
0.997027 0.0770561i \(-0.0245521\pi\)
\(444\) 0 0
\(445\) 1.36845e6 + 2.37022e6i 0.327588 + 0.567399i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 782382. 0.183148 0.0915742 0.995798i \(-0.470810\pi\)
0.0915742 + 0.995798i \(0.470810\pi\)
\(450\) 0 0
\(451\) −585736. 1.01453e6i −0.135600 0.234867i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 713301. + 653002.i 0.161527 + 0.147872i
\(456\) 0 0
\(457\) 265708. 460219.i 0.0595132 0.103080i −0.834734 0.550654i \(-0.814378\pi\)
0.894247 + 0.447574i \(0.147712\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.34721e6 0.295245 0.147623 0.989044i \(-0.452838\pi\)
0.147623 + 0.989044i \(0.452838\pi\)
\(462\) 0 0
\(463\) 6.81207e6 1.47682 0.738409 0.674354i \(-0.235578\pi\)
0.738409 + 0.674354i \(0.235578\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −510769. + 884678.i −0.108376 + 0.187712i −0.915112 0.403199i \(-0.867898\pi\)
0.806737 + 0.590911i \(0.201232\pi\)
\(468\) 0 0
\(469\) 950433. 300163.i 0.199521 0.0630122i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 371910. + 644168.i 0.0764338 + 0.132387i
\(474\) 0 0
\(475\) −2.72066e6 −0.553274
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.15913e6 + 7.20382e6i 0.828254 + 1.43458i 0.899407 + 0.437113i \(0.143999\pi\)
−0.0711525 + 0.997465i \(0.522668\pi\)
\(480\) 0 0
\(481\) 867769. 1.50302e6i 0.171018 0.296212i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.42695e6 2.47155e6i 0.275458 0.477107i
\(486\) 0 0
\(487\) −301362. 521975.i −0.0575793 0.0997303i 0.835799 0.549036i \(-0.185005\pi\)
−0.893378 + 0.449305i \(0.851672\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5.27617e6 0.987678 0.493839 0.869553i \(-0.335593\pi\)
0.493839 + 0.869553i \(0.335593\pi\)
\(492\) 0 0
\(493\) 1.11540e6 + 1.93194e6i 0.206688 + 0.357994i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2.18062e6 + 9.85812e6i −0.395995 + 1.79021i
\(498\) 0 0
\(499\) 4.09788e6 7.09774e6i 0.736730 1.27605i −0.217230 0.976120i \(-0.569702\pi\)
0.953960 0.299933i \(-0.0969644\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3.81947e6 −0.673106 −0.336553 0.941665i \(-0.609261\pi\)
−0.336553 + 0.941665i \(0.609261\pi\)
\(504\) 0 0
\(505\) 4.88702e6 0.852739
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.00020e6 1.73239e6i 0.171116 0.296382i −0.767694 0.640816i \(-0.778596\pi\)
0.938810 + 0.344434i \(0.111929\pi\)
\(510\) 0 0
\(511\) −9.13772e6 + 2.88585e6i −1.54805 + 0.488901i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 225262. + 390165.i 0.0374257 + 0.0648232i
\(516\) 0 0
\(517\) 3.01702e6 0.496422
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5.83316e6 + 1.01033e7i 0.941477 + 1.63069i 0.762656 + 0.646805i \(0.223895\pi\)
0.178821 + 0.983882i \(0.442772\pi\)
\(522\) 0 0
\(523\) −5.41109e6 + 9.37228e6i −0.865029 + 1.49827i 0.00199012 + 0.999998i \(0.499367\pi\)
−0.867019 + 0.498276i \(0.833967\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.06744e6 + 1.84887e6i −0.167424 + 0.289988i
\(528\) 0 0
\(529\) 2.02199e6 + 3.50219e6i 0.314152 + 0.544128i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.89476e6 −0.288892
\(534\) 0 0
\(535\) 2.29863e6 + 3.98135e6i 0.347204 + 0.601376i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −163982. 1.85420e6i −0.0243122 0.274906i
\(540\) 0 0
\(541\) −543570. + 941491.i −0.0798477 + 0.138300i −0.903184 0.429253i \(-0.858777\pi\)
0.823336 + 0.567554i \(0.192110\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 510578. 0.0736327
\(546\) 0 0
\(547\) 413333. 0.0590652 0.0295326 0.999564i \(-0.490598\pi\)
0.0295326 + 0.999564i \(0.490598\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.13580e6 1.06275e7i 0.860978 1.49126i
\(552\) 0 0
\(553\) −4.20103e6 3.84589e6i −0.584174 0.534791i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −6.00908e6 1.04080e7i −0.820673 1.42145i −0.905182 0.425024i \(-0.860266\pi\)
0.0845091 0.996423i \(-0.473068\pi\)
\(558\) 0 0
\(559\) 1.20307e6 0.162840
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7.12659e6 + 1.23436e7i 0.947569 + 1.64124i 0.750524 + 0.660843i \(0.229801\pi\)
0.197045 + 0.980394i \(0.436865\pi\)
\(564\) 0 0
\(565\) −2.54670e6 + 4.41101e6i −0.335626 + 0.581322i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.36695e6 2.36762e6i 0.176999 0.306571i −0.763852 0.645391i \(-0.776694\pi\)
0.940851 + 0.338820i \(0.110028\pi\)
\(570\) 0 0
\(571\) 1.80448e6 + 3.12545e6i 0.231612 + 0.401164i 0.958283 0.285822i \(-0.0922666\pi\)
−0.726670 + 0.686986i \(0.758933\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.15143e6 0.271367
\(576\) 0 0
\(577\) 812927. + 1.40803e6i 0.101651 + 0.176065i 0.912365 0.409378i \(-0.134254\pi\)
−0.810714 + 0.585443i \(0.800921\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.15344e6 + 5.21445e6i −0.141760 + 0.640867i
\(582\) 0 0
\(583\) 1.80968e6 3.13446e6i 0.220511 0.381936i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9.69220e6 −1.16099 −0.580493 0.814265i \(-0.697140\pi\)
−0.580493 + 0.814265i \(0.697140\pi\)
\(588\) 0 0
\(589\) 1.17439e7 1.39484
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.82133e6 + 3.15463e6i −0.212692 + 0.368394i −0.952556 0.304363i \(-0.901556\pi\)
0.739864 + 0.672756i \(0.234890\pi\)
\(594\) 0 0
\(595\) 414581. 1.87423e6i 0.0480084 0.217036i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 328643. + 569226.i 0.0374246 + 0.0648213i 0.884131 0.467239i \(-0.154751\pi\)
−0.846706 + 0.532060i \(0.821418\pi\)
\(600\) 0 0
\(601\) −1.45544e7 −1.64365 −0.821824 0.569742i \(-0.807043\pi\)
−0.821824 + 0.569742i \(0.807043\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.09783e6 + 5.36560e6i 0.344088 + 0.595978i
\(606\) 0 0
\(607\) 7.04214e6 1.21974e7i 0.775770 1.34367i −0.158590 0.987344i \(-0.550695\pi\)
0.934361 0.356329i \(-0.115972\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.43989e6 4.22601e6i 0.264403 0.457960i
\(612\) 0 0
\(613\) −1.72048e6 2.97996e6i −0.184926 0.320302i 0.758625 0.651527i \(-0.225871\pi\)
−0.943552 + 0.331225i \(0.892538\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.03183e6 −0.637876 −0.318938 0.947776i \(-0.603326\pi\)
−0.318938 + 0.947776i \(0.603326\pi\)
\(618\) 0 0
\(619\) −5.73176e6 9.92770e6i −0.601259 1.04141i −0.992631 0.121178i \(-0.961333\pi\)
0.391372 0.920233i \(-0.372001\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.28479e6 5.75351e6i −0.648740 0.593899i
\(624\) 0 0
\(625\) 1.74206e6 3.01734e6i 0.178387 0.308975i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3.44490e6 −0.347176
\(630\) 0 0
\(631\) 536107. 0.0536016 0.0268008 0.999641i \(-0.491468\pi\)
0.0268008 + 0.999641i \(0.491468\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3.52025e6 6.09725e6i 0.346449 0.600067i
\(636\) 0 0
\(637\) −2.72983e6 1.26981e6i −0.266555 0.123991i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.45587e6 + 2.52164e6i 0.139952 + 0.242403i 0.927478 0.373877i \(-0.121972\pi\)
−0.787526 + 0.616281i \(0.788639\pi\)
\(642\) 0 0
\(643\) 1.93974e7 1.85019 0.925096 0.379732i \(-0.123984\pi\)
0.925096 + 0.379732i \(0.123984\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −7.00425e6 1.21317e7i −0.657811 1.13936i −0.981181 0.193090i \(-0.938149\pi\)
0.323370 0.946273i \(-0.395184\pi\)
\(648\) 0 0
\(649\) 27282.1 47254.0i 0.00254253 0.00440379i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.55312e6 9.61829e6i 0.509629 0.882703i −0.490309 0.871549i \(-0.663116\pi\)
0.999938 0.0111546i \(-0.00355069\pi\)
\(654\) 0 0
\(655\) −7.85887e6 1.36120e7i −0.715743 1.23970i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.00615e7 0.902502 0.451251 0.892397i \(-0.350978\pi\)
0.451251 + 0.892397i \(0.350978\pi\)
\(660\) 0 0
\(661\) 7.14337e6 + 1.23727e7i 0.635916 + 1.10144i 0.986320 + 0.164840i \(0.0527108\pi\)
−0.350405 + 0.936598i \(0.613956\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.00691e7 + 3.17999e6i −0.882951 + 0.278851i
\(666\) 0 0
\(667\) −4.85203e6 + 8.40397e6i −0.422288 + 0.731425i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.49130e6 −0.385094
\(672\) 0 0
\(673\) −2.05348e7 −1.74764 −0.873822 0.486245i \(-0.838366\pi\)
−0.873822 + 0.486245i \(0.838366\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.79648e6 + 3.11159e6i −0.150643 + 0.260922i −0.931464 0.363833i \(-0.881468\pi\)
0.780821 + 0.624755i \(0.214801\pi\)
\(678\) 0 0
\(679\) −1.91897e6 + 8.67524e6i −0.159732 + 0.722116i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −5.96018e6 1.03233e7i −0.488886 0.846776i 0.511032 0.859562i \(-0.329263\pi\)
−0.999918 + 0.0127857i \(0.995930\pi\)
\(684\) 0 0
\(685\) −1.31850e7 −1.07363
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.92701e6 5.06973e6i −0.234896 0.406852i
\(690\) 0 0
\(691\) 2.14050e6 3.70746e6i 0.170538 0.295380i −0.768070 0.640366i \(-0.778783\pi\)
0.938608 + 0.344985i \(0.112116\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.77730e6 8.27452e6i 0.375163 0.649802i
\(696\) 0 0
\(697\) 1.88047e6 + 3.25707e6i 0.146617 + 0.253948i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 8.79081e6 0.675669 0.337834 0.941206i \(-0.390306\pi\)
0.337834 + 0.941206i \(0.390306\pi\)
\(702\) 0 0
\(703\) 9.47512e6 + 1.64114e7i 0.723097 + 1.25244i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.45082e7 + 4.58194e6i −1.09161 + 0.344748i
\(708\) 0 0
\(709\) −1.98988e6 + 3.44658e6i −0.148666 + 0.257497i −0.930735 0.365695i \(-0.880831\pi\)
0.782069 + 0.623192i \(0.214165\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.28681e6 −0.684136
\(714\) 0 0
\(715\) −826166. −0.0604369
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.44409e6 + 2.50124e6i −0.104177 + 0.180440i −0.913402 0.407059i \(-0.866554\pi\)
0.809225 + 0.587499i \(0.199888\pi\)
\(720\) 0 0
\(721\) −1.03455e6 947094.i −0.0741162 0.0678508i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.36339e6 7.55762e6i −0.308304 0.533998i
\(726\) 0 0
\(727\) −2.12040e7 −1.48793 −0.743963 0.668221i \(-0.767056\pi\)
−0.743963 + 0.668221i \(0.767056\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.19400e6 2.06806e6i −0.0826436 0.143143i
\(732\) 0 0
\(733\) 9.79859e6 1.69716e7i 0.673602 1.16671i −0.303273 0.952904i \(-0.598079\pi\)
0.976875 0.213810i \(-0.0685872\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −425745. + 737412.i −0.0288723 + 0.0500082i
\(738\) 0 0
\(739\) −1.20566e7 2.08827e7i −0.812108 1.40661i −0.911386 0.411553i \(-0.864986\pi\)
0.0992773 0.995060i \(-0.468347\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7.79774e6 0.518199 0.259100 0.965851i \(-0.416574\pi\)
0.259100 + 0.965851i \(0.416574\pi\)
\(744\) 0 0
\(745\) 3.27933e6 + 5.67996e6i 0.216468 + 0.374934i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.05568e7 9.66440e6i −0.687588 0.629463i
\(750\) 0 0
\(751\) 1.00843e7 1.74666e7i 0.652450 1.13008i −0.330077 0.943954i \(-0.607075\pi\)
0.982527 0.186122i \(-0.0595920\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −6.11238e6 −0.390250
\(756\) 0 0
\(757\) −2.80945e6 −0.178190 −0.0890948 0.996023i \(-0.528397\pi\)
−0.0890948 + 0.996023i \(0.528397\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −9.35273e6 + 1.61994e7i −0.585433 + 1.01400i 0.409389 + 0.912360i \(0.365742\pi\)
−0.994821 + 0.101639i \(0.967591\pi\)
\(762\) 0 0
\(763\) −1.51577e6 + 478704.i −0.0942586 + 0.0297684i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −44126.6 76429.4i −0.00270839 0.00469107i
\(768\) 0 0
\(769\) 2.25184e7 1.37316 0.686580 0.727054i \(-0.259111\pi\)
0.686580 + 0.727054i \(0.259111\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.12470e7 + 1.94804e7i 0.677001 + 1.17260i 0.975880 + 0.218309i \(0.0700541\pi\)
−0.298879 + 0.954291i \(0.596613\pi\)
\(774\) 0 0
\(775\) 4.17578e6 7.23266e6i 0.249737 0.432557i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.03444e7 1.79170e7i 0.610747 1.05784i
\(780\) 0 0
\(781\) −4.31271e6 7.46983e6i −0.253001 0.438211i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.36371e7 −0.789854
\(786\) 0 0
\(787\) −4.90014e6 8.48729e6i −0.282014 0.488463i 0.689866 0.723937i \(-0.257669\pi\)
−0.971881 + 0.235473i \(0.924336\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.42480e6 1.54828e7i 0.194623 0.879848i
\(792\) 0 0
\(793\) −3.63216e6 + 6.29108e6i −0.205108 + 0.355257i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.21486e7 0.677456 0.338728 0.940884i \(-0.390003\pi\)
0.338728 + 0.940884i \(0.390003\pi\)
\(798\) 0 0
\(799\) −9.68594e6 −0.536753
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.09323e6 7.08967e6i 0.224015 0.388005i
\(804\) 0 0
\(805\) 7.96238e6 2.51465e6i 0.433065 0.136769i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −2.86932e6 4.96981e6i −0.154137 0.266974i 0.778607 0.627512i \(-0.215926\pi\)
−0.932745 + 0.360538i \(0.882593\pi\)
\(810\) 0 0
\(811\) 1.14111e7 0.609220 0.304610 0.952477i \(-0.401474\pi\)
0.304610 + 0.952477i \(0.401474\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −7.24956e6 1.25566e7i −0.382312 0.662184i
\(816\) 0 0
\(817\) −6.56812e6 + 1.13763e7i −0.344260 + 0.596275i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7.69674e6 + 1.33311e7i −0.398519 + 0.690255i −0.993543 0.113453i \(-0.963809\pi\)
0.595025 + 0.803708i \(0.297142\pi\)
\(822\) 0 0
\(823\) 8.45959e6 + 1.46524e7i 0.435361 + 0.754068i 0.997325 0.0730941i \(-0.0232873\pi\)
−0.561964 + 0.827162i \(0.689954\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.64225e7 1.34341 0.671707 0.740817i \(-0.265561\pi\)
0.671707 + 0.740817i \(0.265561\pi\)
\(828\) 0 0
\(829\) 989105. + 1.71318e6i 0.0499869 + 0.0865798i 0.889936 0.456085i \(-0.150749\pi\)
−0.839949 + 0.542665i \(0.817415\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 526453. + 5.95279e6i 0.0262874 + 0.297240i
\(834\) 0 0
\(835\) −1.14051e7 + 1.97542e7i −0.566086 + 0.980490i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.20079e7 1.07938 0.539689 0.841865i \(-0.318542\pi\)
0.539689 + 0.841865i \(0.318542\pi\)
\(840\) 0 0
\(841\) 1.88512e7 0.919071
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 7.06253e6 1.22327e7i 0.340266 0.589358i
\(846\) 0 0
\(847\) −1.42273e7 1.30246e7i −0.681417 0.623813i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −7.49268e6 1.29777e7i −0.354661 0.614291i
\(852\) 0 0
\(853\) −2.53601e6 −0.119338 −0.0596689 0.998218i \(-0.519004\pi\)
−0.0596689 + 0.998218i \(0.519004\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −573156. 992735.i −0.0266576 0.0461723i 0.852389 0.522908i \(-0.175153\pi\)
−0.879046 + 0.476736i \(0.841820\pi\)
\(858\) 0 0
\(859\) −8.38795e6 + 1.45284e7i −0.387858 + 0.671790i −0.992161 0.124964i \(-0.960118\pi\)
0.604303 + 0.796755i \(0.293452\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9.24028e6 + 1.60046e7i −0.422336 + 0.731507i −0.996168 0.0874660i \(-0.972123\pi\)
0.573832 + 0.818973i \(0.305456\pi\)
\(864\) 0 0
\(865\) 3.80067e6 + 6.58295e6i 0.172711 + 0.299144i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.86575e6 0.218575
\(870\) 0 0
\(871\) 688607. + 1.19270e6i 0.0307557 + 0.0532705i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −5.26548e6 + 2.38041e7i −0.232497 + 1.05107i
\(876\) 0 0
\(877\) 3.30705e6 5.72798e6i 0.145192 0.251479i −0.784253 0.620441i \(-0.786953\pi\)
0.929444 + 0.368962i \(0.120287\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −3.43282e7 −1.49009 −0.745043 0.667016i \(-0.767571\pi\)
−0.745043 + 0.667016i \(0.767571\pi\)
\(882\) 0 0
\(883\) 5.51963e6 0.238236 0.119118 0.992880i \(-0.461993\pi\)
0.119118 + 0.992880i \(0.461993\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3.77735e6 + 6.54256e6i −0.161205 + 0.279215i −0.935301 0.353853i \(-0.884871\pi\)
0.774096 + 0.633068i \(0.218205\pi\)
\(888\) 0 0
\(889\) −4.73404e6 + 2.14016e7i −0.200899 + 0.908220i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.66410e7 + 4.61436e7i 1.11795 + 1.93634i
\(894\) 0 0
\(895\) −5.66842e6 −0.236540
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.88349e7 + 3.26230e7i 0.777257 + 1.34625i
\(900\) 0 0
\(901\) −5.80987e6 + 1.00630e7i −0.238426 + 0.412966i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.23131e7 + 2.13269e7i −0.499742 + 0.865578i
\(906\) 0 0
\(907\) 1.69135e7 + 2.92951e7i 0.682678 + 1.18243i 0.974161 + 0.225857i \(0.0725181\pi\)
−0.291483 + 0.956576i \(0.594149\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −3.27859e7 −1.30885 −0.654426 0.756126i \(-0.727090\pi\)
−0.654426 + 0.756126i \(0.727090\pi\)
\(912\) 0 0
\(913\) −2.28120e6 3.95116e6i −0.0905706 0.156873i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.60931e7 + 3.30419e7i 1.41743 + 1.29760i
\(918\) 0 0
\(919\) 2.34936e7 4.06921e7i 0.917615 1.58936i 0.114588 0.993413i \(-0.463445\pi\)
0.803027 0.595943i \(-0.203222\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.39509e7 −0.539011
\(924\) 0 0
\(925\) 1.34762e7 0.517862
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.97801e7 3.42602e7i 0.751952 1.30242i −0.194923 0.980819i \(-0.562446\pi\)
0.946875 0.321601i \(-0.104221\pi\)
\(930\) 0 0
\(931\) 2.69109e7 1.88810e7i 1.01755 0.713923i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 819935. + 1.42017e6i 0.0306726 + 0.0531265i
\(936\) 0 0
\(937\) −2.90483e7 −1.08086 −0.540432 0.841387i \(-0.681739\pi\)
−0.540432 + 0.841387i \(0.681739\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.65600e7 + 2.86827e7i 0.609656 + 1.05596i 0.991297 + 0.131645i \(0.0420258\pi\)
−0.381641 + 0.924311i \(0.624641\pi\)
\(942\) 0 0
\(943\) −8.18008e6 + 1.41683e7i −0.299556 + 0.518847i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.99566e7 3.45658e7i 0.723121 1.25248i −0.236622 0.971602i \(-0.576040\pi\)
0.959743 0.280880i \(-0.0906264\pi\)
\(948\) 0 0
\(949\) −6.62045e6 1.14670e7i −0.238628 0.413317i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.23250e7 −0.439596 −0.219798 0.975545i \(-0.570540\pi\)
−0.219798 + 0.975545i \(0.570540\pi\)
\(954\) 0 0
\(955\) −9.18600e6 1.59106e7i −0.325925 0.564519i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.91428e7 1.23619e7i 1.37437 0.434051i
\(960\) 0 0
\(961\) −3.71048e6 + 6.42675e6i −0.129605 + 0.224483i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.86712e7 0.645436
\(966\) 0 0
\(967\) 4.13540e7 1.42217 0.711084 0.703107i \(-0.248204\pi\)
0.711084 + 0.703107i \(0.248204\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.44158e7 + 2.49690e7i −0.490672 + 0.849870i −0.999942 0.0107372i \(-0.996582\pi\)
0.509270 + 0.860607i \(0.329916\pi\)
\(972\) 0 0
\(973\) −6.42451e6 + 2.90439e7i −0.217550 + 0.983495i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −4.42571e6 7.66556e6i −0.148336 0.256926i 0.782277 0.622931i \(-0.214058\pi\)
−0.930613 + 0.366006i \(0.880725\pi\)
\(978\) 0 0
\(979\) 7.27923e6 0.242733
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1.38853e7 2.40500e7i −0.458322 0.793836i 0.540551 0.841311i \(-0.318216\pi\)
−0.998872 + 0.0474751i \(0.984883\pi\)
\(984\) 0 0
\(985\) −1.12853e7 + 1.95468e7i −0.370616 + 0.641925i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.19390e6 8.99610e6i 0.168851 0.292458i
\(990\) 0 0
\(991\) 2.72862e7 + 4.72612e7i 0.882591 + 1.52869i 0.848450 + 0.529276i \(0.177536\pi\)
0.0341418 + 0.999417i \(0.489130\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −8.24336e6 −0.263965
\(996\) 0 0
\(997\) −8.19953e6 1.42020e7i −0.261247 0.452493i 0.705327 0.708882i \(-0.250800\pi\)
−0.966574 + 0.256390i \(0.917467\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.6.k.d.37.1 4
3.2 odd 2 28.6.e.b.9.2 4
7.4 even 3 inner 252.6.k.d.109.1 4
12.11 even 2 112.6.i.e.65.1 4
21.2 odd 6 196.6.a.j.1.1 2
21.5 even 6 196.6.a.h.1.2 2
21.11 odd 6 28.6.e.b.25.2 yes 4
21.17 even 6 196.6.e.k.165.1 4
21.20 even 2 196.6.e.k.177.1 4
84.11 even 6 112.6.i.e.81.1 4
84.23 even 6 784.6.a.o.1.2 2
84.47 odd 6 784.6.a.bd.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.6.e.b.9.2 4 3.2 odd 2
28.6.e.b.25.2 yes 4 21.11 odd 6
112.6.i.e.65.1 4 12.11 even 2
112.6.i.e.81.1 4 84.11 even 6
196.6.a.h.1.2 2 21.5 even 6
196.6.a.j.1.1 2 21.2 odd 6
196.6.e.k.165.1 4 21.17 even 6
196.6.e.k.177.1 4 21.20 even 2
252.6.k.d.37.1 4 1.1 even 1 trivial
252.6.k.d.109.1 4 7.4 even 3 inner
784.6.a.o.1.2 2 84.23 even 6
784.6.a.bd.1.1 2 84.47 odd 6