Properties

Label 252.6
Level 252
Weight 6
Dimension 3780
Nonzero newspaces 20
Sturm bound 20736
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 20 \)
Sturm bound: \(20736\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(252))\).

Total New Old
Modular forms 8880 3872 5008
Cusp forms 8400 3780 4620
Eisenstein series 480 92 388

Trace form

\( 3780 q - 3 q^{2} - 24 q^{3} + 33 q^{4} + 111 q^{5} + 42 q^{6} - 293 q^{7} + 249 q^{8} - 84 q^{9} - 2028 q^{10} + 993 q^{11} + 960 q^{12} + 1582 q^{13} + 3369 q^{14} - 3534 q^{15} + 3189 q^{16} - 7419 q^{17}+ \cdots + 1555206 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(252))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
252.6.a \(\chi_{252}(1, \cdot)\) 252.6.a.a 1 1
252.6.a.b 1
252.6.a.c 1
252.6.a.d 1
252.6.a.e 2
252.6.a.f 2
252.6.a.g 2
252.6.a.h 2
252.6.b \(\chi_{252}(55, \cdot)\) 252.6.b.a 2 1
252.6.b.b 4
252.6.b.c 4
252.6.b.d 16
252.6.b.e 20
252.6.b.f 20
252.6.b.g 32
252.6.e \(\chi_{252}(71, \cdot)\) 252.6.e.a 60 1
252.6.f \(\chi_{252}(125, \cdot)\) 252.6.f.a 12 1
252.6.i \(\chi_{252}(25, \cdot)\) 252.6.i.a 80 2
252.6.j \(\chi_{252}(85, \cdot)\) 252.6.j.a 30 2
252.6.j.b 30
252.6.k \(\chi_{252}(37, \cdot)\) 252.6.k.a 2 2
252.6.k.b 2
252.6.k.c 2
252.6.k.d 4
252.6.k.e 4
252.6.k.f 8
252.6.k.g 12
252.6.l \(\chi_{252}(193, \cdot)\) 252.6.l.a 80 2
252.6.n \(\chi_{252}(31, \cdot)\) n/a 472 2
252.6.o \(\chi_{252}(95, \cdot)\) n/a 472 2
252.6.t \(\chi_{252}(17, \cdot)\) 252.6.t.a 28 2
252.6.w \(\chi_{252}(5, \cdot)\) 252.6.w.a 80 2
252.6.x \(\chi_{252}(41, \cdot)\) 252.6.x.a 80 2
252.6.ba \(\chi_{252}(155, \cdot)\) n/a 360 2
252.6.bb \(\chi_{252}(11, \cdot)\) n/a 472 2
252.6.be \(\chi_{252}(107, \cdot)\) n/a 160 2
252.6.bf \(\chi_{252}(19, \cdot)\) n/a 196 2
252.6.bi \(\chi_{252}(139, \cdot)\) n/a 472 2
252.6.bj \(\chi_{252}(103, \cdot)\) n/a 472 2
252.6.bm \(\chi_{252}(173, \cdot)\) 252.6.bm.a 80 2

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(252))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(252)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 9}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(126))\)\(^{\oplus 2}\)