Properties

Label 252.5.z.f.73.1
Level $252$
Weight $5$
Character 252.73
Analytic conductor $26.049$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [252,5,Mod(73,252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("252.73"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(252, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 252.z (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,27,0,66] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.0492306971\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.11337408.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 18x^{4} + 81x^{2} + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 73.1
Root \(-0.391571i\) of defining polynomial
Character \(\chi\) \(=\) 252.73
Dual form 252.5.z.f.145.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-38.3327 + 22.1314i) q^{5} +(42.3967 + 24.5667i) q^{7} +(11.7557 - 20.3615i) q^{11} +136.269i q^{13} +(227.333 + 131.251i) q^{17} +(-387.162 + 223.528i) q^{19} +(-374.585 - 648.800i) q^{23} +(667.098 - 1155.45i) q^{25} -406.524 q^{29} +(-584.199 - 337.287i) q^{31} +(-2168.87 - 3.40909i) q^{35} +(-372.666 - 645.476i) q^{37} -2476.20i q^{41} -2636.68 q^{43} +(579.099 - 334.343i) q^{47} +(1193.96 + 2083.09i) q^{49} +(-1014.61 + 1757.36i) q^{53} +1040.68i q^{55} +(1014.22 + 585.561i) q^{59} +(-2022.05 + 1167.43i) q^{61} +(-3015.83 - 5223.58i) q^{65} +(3779.79 - 6546.78i) q^{67} -7575.36 q^{71} +(3284.18 + 1896.12i) q^{73} +(998.615 - 574.460i) q^{77} +(-3897.33 - 6750.37i) q^{79} -2181.41i q^{83} -11619.0 q^{85} +(-8050.38 + 4647.89i) q^{89} +(-3347.69 + 5777.37i) q^{91} +(9893.98 - 17136.9i) q^{95} -9981.90i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 27 q^{5} + 66 q^{7} - 135 q^{11} + 1107 q^{17} - 747 q^{19} - 243 q^{23} + 1878 q^{25} + 540 q^{29} - 5355 q^{31} - 6021 q^{35} + 2355 q^{37} - 948 q^{43} + 9747 q^{47} + 8430 q^{49} - 6291 q^{53}+ \cdots + 20655 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −38.3327 + 22.1314i −1.53331 + 0.885256i −0.534102 + 0.845420i \(0.679350\pi\)
−0.999206 + 0.0398360i \(0.987316\pi\)
\(6\) 0 0
\(7\) 42.3967 + 24.5667i 0.865238 + 0.501361i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 11.7557 20.3615i 0.0971545 0.168276i −0.813351 0.581773i \(-0.802359\pi\)
0.910506 + 0.413496i \(0.135693\pi\)
\(12\) 0 0
\(13\) 136.269i 0.806328i 0.915128 + 0.403164i \(0.132090\pi\)
−0.915128 + 0.403164i \(0.867910\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 227.333 + 131.251i 0.786618 + 0.454154i 0.838771 0.544485i \(-0.183275\pi\)
−0.0521523 + 0.998639i \(0.516608\pi\)
\(18\) 0 0
\(19\) −387.162 + 223.528i −1.07247 + 0.619191i −0.928855 0.370442i \(-0.879206\pi\)
−0.143615 + 0.989634i \(0.545873\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −374.585 648.800i −0.708100 1.22646i −0.965561 0.260176i \(-0.916219\pi\)
0.257462 0.966288i \(-0.417114\pi\)
\(24\) 0 0
\(25\) 667.098 1155.45i 1.06736 1.84872i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −406.524 −0.483382 −0.241691 0.970353i \(-0.577702\pi\)
−0.241691 + 0.970353i \(0.577702\pi\)
\(30\) 0 0
\(31\) −584.199 337.287i −0.607907 0.350975i 0.164239 0.986421i \(-0.447483\pi\)
−0.772146 + 0.635445i \(0.780817\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2168.87 3.40909i −1.77051 0.00278293i
\(36\) 0 0
\(37\) −372.666 645.476i −0.272218 0.471495i 0.697212 0.716865i \(-0.254424\pi\)
−0.969429 + 0.245370i \(0.921090\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2476.20i 1.47305i −0.676410 0.736526i \(-0.736465\pi\)
0.676410 0.736526i \(-0.263535\pi\)
\(42\) 0 0
\(43\) −2636.68 −1.42601 −0.713003 0.701161i \(-0.752665\pi\)
−0.713003 + 0.701161i \(0.752665\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 579.099 334.343i 0.262154 0.151355i −0.363163 0.931726i \(-0.618303\pi\)
0.625317 + 0.780371i \(0.284970\pi\)
\(48\) 0 0
\(49\) 1193.96 + 2083.09i 0.497275 + 0.867593i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1014.61 + 1757.36i −0.361200 + 0.625617i −0.988159 0.153436i \(-0.950966\pi\)
0.626959 + 0.779053i \(0.284300\pi\)
\(54\) 0 0
\(55\) 1040.68i 0.344026i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1014.22 + 585.561i 0.291359 + 0.168216i 0.638555 0.769576i \(-0.279533\pi\)
−0.347195 + 0.937793i \(0.612866\pi\)
\(60\) 0 0
\(61\) −2022.05 + 1167.43i −0.543416 + 0.313741i −0.746462 0.665428i \(-0.768249\pi\)
0.203047 + 0.979169i \(0.434916\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3015.83 5223.58i −0.713807 1.23635i
\(66\) 0 0
\(67\) 3779.79 6546.78i 0.842011 1.45841i −0.0461815 0.998933i \(-0.514705\pi\)
0.888192 0.459472i \(-0.151961\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7575.36 −1.50275 −0.751375 0.659876i \(-0.770609\pi\)
−0.751375 + 0.659876i \(0.770609\pi\)
\(72\) 0 0
\(73\) 3284.18 + 1896.12i 0.616284 + 0.355812i 0.775421 0.631445i \(-0.217538\pi\)
−0.159137 + 0.987257i \(0.550871\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 998.615 574.460i 0.168429 0.0968898i
\(78\) 0 0
\(79\) −3897.33 6750.37i −0.624472 1.08162i −0.988643 0.150285i \(-0.951981\pi\)
0.364171 0.931332i \(-0.381353\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2181.41i 0.316651i −0.987387 0.158326i \(-0.949390\pi\)
0.987387 0.158326i \(-0.0506096\pi\)
\(84\) 0 0
\(85\) −11619.0 −1.60817
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −8050.38 + 4647.89i −1.01633 + 0.586781i −0.913040 0.407870i \(-0.866272\pi\)
−0.103294 + 0.994651i \(0.532938\pi\)
\(90\) 0 0
\(91\) −3347.69 + 5777.37i −0.404261 + 0.697666i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 9893.98 17136.9i 1.09629 1.89882i
\(96\) 0 0
\(97\) 9981.90i 1.06089i −0.847720 0.530444i \(-0.822025\pi\)
0.847720 0.530444i \(-0.177975\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 675.552 + 390.030i 0.0662241 + 0.0382345i 0.532746 0.846275i \(-0.321160\pi\)
−0.466522 + 0.884509i \(0.654493\pi\)
\(102\) 0 0
\(103\) 2383.90 1376.35i 0.224706 0.129734i −0.383422 0.923573i \(-0.625254\pi\)
0.608127 + 0.793840i \(0.291921\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7429.46 + 12868.2i 0.648917 + 1.12396i 0.983382 + 0.181550i \(0.0581113\pi\)
−0.334464 + 0.942408i \(0.608555\pi\)
\(108\) 0 0
\(109\) −1378.33 + 2387.33i −0.116011 + 0.200937i −0.918183 0.396155i \(-0.870344\pi\)
0.802172 + 0.597092i \(0.203677\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6264.79 −0.490625 −0.245312 0.969444i \(-0.578891\pi\)
−0.245312 + 0.969444i \(0.578891\pi\)
\(114\) 0 0
\(115\) 28717.7 + 16580.2i 2.17147 + 1.25370i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6413.76 + 11149.4i 0.452917 + 0.787331i
\(120\) 0 0
\(121\) 7044.11 + 12200.8i 0.481122 + 0.833328i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 31391.0i 2.00902i
\(126\) 0 0
\(127\) 12855.0 0.797010 0.398505 0.917166i \(-0.369529\pi\)
0.398505 + 0.917166i \(0.369529\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 21412.5 12362.5i 1.24774 0.720383i 0.277082 0.960846i \(-0.410633\pi\)
0.970658 + 0.240464i \(0.0772995\pi\)
\(132\) 0 0
\(133\) −21905.7 34.4320i −1.23838 0.00194652i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 661.078 1145.02i 0.0352218 0.0610059i −0.847877 0.530193i \(-0.822120\pi\)
0.883099 + 0.469187i \(0.155453\pi\)
\(138\) 0 0
\(139\) 5119.78i 0.264985i 0.991184 + 0.132493i \(0.0422981\pi\)
−0.991184 + 0.132493i \(0.957702\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2774.64 + 1601.94i 0.135686 + 0.0783384i
\(144\) 0 0
\(145\) 15583.2 8996.95i 0.741173 0.427917i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5104.93 + 8842.00i 0.229942 + 0.398270i 0.957791 0.287467i \(-0.0928132\pi\)
−0.727849 + 0.685737i \(0.759480\pi\)
\(150\) 0 0
\(151\) −14672.1 + 25412.8i −0.643483 + 1.11455i 0.341166 + 0.940003i \(0.389178\pi\)
−0.984650 + 0.174543i \(0.944155\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 29858.6 1.24281
\(156\) 0 0
\(157\) −26033.1 15030.2i −1.05615 0.609770i −0.131787 0.991278i \(-0.542072\pi\)
−0.924366 + 0.381508i \(0.875405\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 57.7005 36709.3i 0.00222602 1.41620i
\(162\) 0 0
\(163\) −15439.7 26742.3i −0.581115 1.00652i −0.995348 0.0963500i \(-0.969283\pi\)
0.414232 0.910171i \(-0.364050\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12858.8i 0.461070i 0.973064 + 0.230535i \(0.0740477\pi\)
−0.973064 + 0.230535i \(0.925952\pi\)
\(168\) 0 0
\(169\) 9991.63 0.349835
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −13588.8 + 7845.51i −0.454035 + 0.262137i −0.709533 0.704672i \(-0.751094\pi\)
0.255498 + 0.966810i \(0.417761\pi\)
\(174\) 0 0
\(175\) 56668.2 32598.8i 1.85039 1.06445i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −15993.2 + 27701.0i −0.499148 + 0.864550i −1.00000 0.000983488i \(-0.999687\pi\)
0.500851 + 0.865533i \(0.333020\pi\)
\(180\) 0 0
\(181\) 47967.6i 1.46417i 0.681215 + 0.732083i \(0.261452\pi\)
−0.681215 + 0.732083i \(0.738548\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 28570.6 + 16495.2i 0.834787 + 0.481965i
\(186\) 0 0
\(187\) 5344.91 3085.88i 0.152847 0.0882462i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2227.93 + 3858.88i 0.0610709 + 0.105778i 0.894944 0.446178i \(-0.147215\pi\)
−0.833873 + 0.551956i \(0.813882\pi\)
\(192\) 0 0
\(193\) 14699.9 25460.9i 0.394638 0.683533i −0.598417 0.801185i \(-0.704203\pi\)
0.993055 + 0.117652i \(0.0375366\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −23816.0 −0.613671 −0.306836 0.951763i \(-0.599270\pi\)
−0.306836 + 0.951763i \(0.599270\pi\)
\(198\) 0 0
\(199\) −42280.9 24410.9i −1.06767 0.616421i −0.140128 0.990133i \(-0.544751\pi\)
−0.927545 + 0.373713i \(0.878085\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −17235.3 9986.94i −0.418241 0.242349i
\(204\) 0 0
\(205\) 54801.8 + 94919.4i 1.30403 + 2.25864i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 10510.9i 0.240629i
\(210\) 0 0
\(211\) −9582.07 −0.215226 −0.107613 0.994193i \(-0.534321\pi\)
−0.107613 + 0.994193i \(0.534321\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 101071. 58353.5i 2.18651 1.26238i
\(216\) 0 0
\(217\) −16482.1 28651.7i −0.350019 0.608458i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −17885.5 + 30978.5i −0.366197 + 0.634273i
\(222\) 0 0
\(223\) 54978.9i 1.10557i 0.833324 + 0.552785i \(0.186435\pi\)
−0.833324 + 0.552785i \(0.813565\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7518.24 + 4340.66i 0.145903 + 0.0842372i 0.571174 0.820829i \(-0.306488\pi\)
−0.425271 + 0.905066i \(0.639821\pi\)
\(228\) 0 0
\(229\) −6262.86 + 3615.86i −0.119427 + 0.0689511i −0.558523 0.829489i \(-0.688632\pi\)
0.439097 + 0.898440i \(0.355299\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4422.96 + 7660.79i 0.0814707 + 0.141111i 0.903882 0.427782i \(-0.140705\pi\)
−0.822411 + 0.568894i \(0.807372\pi\)
\(234\) 0 0
\(235\) −14799.0 + 25632.5i −0.267976 + 0.464147i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −88491.7 −1.54920 −0.774599 0.632453i \(-0.782048\pi\)
−0.774599 + 0.632453i \(0.782048\pi\)
\(240\) 0 0
\(241\) −53365.8 30810.7i −0.918816 0.530479i −0.0355589 0.999368i \(-0.511321\pi\)
−0.883257 + 0.468889i \(0.844654\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −91869.3 53426.6i −1.53052 0.890072i
\(246\) 0 0
\(247\) −30460.0 52758.4i −0.499271 0.864763i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 57796.3i 0.917386i −0.888595 0.458693i \(-0.848318\pi\)
0.888595 0.458693i \(-0.151682\pi\)
\(252\) 0 0
\(253\) −17614.0 −0.275180
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −60734.3 + 35065.0i −0.919534 + 0.530893i −0.883486 0.468457i \(-0.844810\pi\)
−0.0360479 + 0.999350i \(0.511477\pi\)
\(258\) 0 0
\(259\) 57.4050 36521.2i 0.000855756 0.544435i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 11120.9 19262.0i 0.160779 0.278477i −0.774369 0.632734i \(-0.781933\pi\)
0.935148 + 0.354257i \(0.115266\pi\)
\(264\) 0 0
\(265\) 89819.0i 1.27902i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −40332.3 23285.9i −0.557376 0.321801i 0.194715 0.980860i \(-0.437622\pi\)
−0.752092 + 0.659058i \(0.770955\pi\)
\(270\) 0 0
\(271\) 71958.3 41545.1i 0.979811 0.565694i 0.0775980 0.996985i \(-0.475275\pi\)
0.902213 + 0.431291i \(0.141942\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −15684.4 27166.2i −0.207397 0.359222i
\(276\) 0 0
\(277\) 4514.06 7818.59i 0.0588313 0.101899i −0.835110 0.550083i \(-0.814596\pi\)
0.893941 + 0.448185i \(0.147929\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −64188.4 −0.812912 −0.406456 0.913670i \(-0.633236\pi\)
−0.406456 + 0.913670i \(0.633236\pi\)
\(282\) 0 0
\(283\) 19563.7 + 11295.1i 0.244274 + 0.141032i 0.617140 0.786854i \(-0.288291\pi\)
−0.372865 + 0.927885i \(0.621625\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 60832.0 104983.i 0.738530 1.27454i
\(288\) 0 0
\(289\) −7307.06 12656.2i −0.0874877 0.151533i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 130473.i 1.51980i 0.650040 + 0.759900i \(0.274752\pi\)
−0.650040 + 0.759900i \(0.725248\pi\)
\(294\) 0 0
\(295\) −51837.2 −0.595658
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 88411.6 51044.5i 0.988933 0.570961i
\(300\) 0 0
\(301\) −111787. 64774.5i −1.23383 0.714943i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 51673.7 89501.6i 0.555482 0.962124i
\(306\) 0 0
\(307\) 56173.9i 0.596015i 0.954563 + 0.298008i \(0.0963221\pi\)
−0.954563 + 0.298008i \(0.903678\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −40087.2 23144.4i −0.414462 0.239290i 0.278243 0.960511i \(-0.410248\pi\)
−0.692705 + 0.721221i \(0.743581\pi\)
\(312\) 0 0
\(313\) −119814. + 69174.4i −1.22298 + 0.706085i −0.965551 0.260213i \(-0.916207\pi\)
−0.257424 + 0.966299i \(0.582874\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −29152.7 50493.9i −0.290108 0.502482i 0.683727 0.729738i \(-0.260358\pi\)
−0.973835 + 0.227256i \(0.927025\pi\)
\(318\) 0 0
\(319\) −4778.97 + 8277.42i −0.0469627 + 0.0813418i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −117353. −1.12483
\(324\) 0 0
\(325\) 157452. + 90905.1i 1.49067 + 0.860640i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 32765.6 + 51.5018i 0.302709 + 0.000475806i
\(330\) 0 0
\(331\) −494.602 856.675i −0.00451440 0.00781916i 0.863759 0.503904i \(-0.168104\pi\)
−0.868274 + 0.496085i \(0.834770\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 334608.i 2.98158i
\(336\) 0 0
\(337\) −55958.7 −0.492728 −0.246364 0.969177i \(-0.579236\pi\)
−0.246364 + 0.969177i \(0.579236\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −13735.3 + 7930.09i −0.118122 + 0.0681976i
\(342\) 0 0
\(343\) −554.769 + 117648.i −0.00471546 + 0.999989i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 65322.2 113141.i 0.542502 0.939641i −0.456257 0.889848i \(-0.650810\pi\)
0.998760 0.0497936i \(-0.0158563\pi\)
\(348\) 0 0
\(349\) 110948.i 0.910899i 0.890262 + 0.455450i \(0.150522\pi\)
−0.890262 + 0.455450i \(0.849478\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14727.9 8503.18i −0.118193 0.0682389i 0.439738 0.898126i \(-0.355071\pi\)
−0.557931 + 0.829887i \(0.688405\pi\)
\(354\) 0 0
\(355\) 290384. 167653.i 2.30418 1.33032i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 35732.4 + 61890.3i 0.277251 + 0.480212i 0.970701 0.240293i \(-0.0772434\pi\)
−0.693450 + 0.720505i \(0.743910\pi\)
\(360\) 0 0
\(361\) 34769.0 60221.8i 0.266795 0.462103i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −167855. −1.25994
\(366\) 0 0
\(367\) 147543. + 85183.8i 1.09543 + 0.632448i 0.935017 0.354602i \(-0.115383\pi\)
0.160415 + 0.987050i \(0.448717\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −86188.6 + 49580.5i −0.626184 + 0.360216i
\(372\) 0 0
\(373\) −75346.0 130503.i −0.541555 0.938001i −0.998815 0.0486680i \(-0.984502\pi\)
0.457260 0.889333i \(-0.348831\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 55396.8i 0.389764i
\(378\) 0 0
\(379\) −211477. −1.47226 −0.736129 0.676841i \(-0.763348\pi\)
−0.736129 + 0.676841i \(0.763348\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 102769. 59333.6i 0.700590 0.404486i −0.106977 0.994261i \(-0.534117\pi\)
0.807567 + 0.589776i \(0.200784\pi\)
\(384\) 0 0
\(385\) −25566.0 + 44121.4i −0.172481 + 0.297665i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 107858. 186816.i 0.712778 1.23457i −0.251033 0.967979i \(-0.580770\pi\)
0.963810 0.266588i \(-0.0858964\pi\)
\(390\) 0 0
\(391\) 196658.i 1.28635i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 298790. + 172507.i 1.91502 + 1.10564i
\(396\) 0 0
\(397\) −134011. + 77371.1i −0.850273 + 0.490905i −0.860743 0.509040i \(-0.830001\pi\)
0.0104699 + 0.999945i \(0.496667\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 100029. + 173255.i 0.622067 + 1.07745i 0.989100 + 0.147244i \(0.0470403\pi\)
−0.367033 + 0.930208i \(0.619626\pi\)
\(402\) 0 0
\(403\) 45962.0 79608.5i 0.283001 0.490173i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −17523.8 −0.105789
\(408\) 0 0
\(409\) 190382. + 109917.i 1.13810 + 0.657080i 0.945958 0.324288i \(-0.105125\pi\)
0.192137 + 0.981368i \(0.438458\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 28614.4 + 49741.9i 0.167758 + 0.291623i
\(414\) 0 0
\(415\) 48277.7 + 83619.4i 0.280318 + 0.485524i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 31359.8i 0.178626i −0.996004 0.0893132i \(-0.971533\pi\)
0.996004 0.0893132i \(-0.0284672\pi\)
\(420\) 0 0
\(421\) −73690.7 −0.415766 −0.207883 0.978154i \(-0.566657\pi\)
−0.207883 + 0.978154i \(0.566657\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 303306. 175114.i 1.67920 0.969489i
\(426\) 0 0
\(427\) −114408. 179.830i −0.627481 0.000986291i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −132586. + 229646.i −0.713746 + 1.23624i 0.249695 + 0.968325i \(0.419670\pi\)
−0.963441 + 0.267920i \(0.913664\pi\)
\(432\) 0 0
\(433\) 124873.i 0.666027i 0.942922 + 0.333014i \(0.108066\pi\)
−0.942922 + 0.333014i \(0.891934\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 290050. + 167460.i 1.51883 + 0.876898i
\(438\) 0 0
\(439\) −120989. + 69852.8i −0.627792 + 0.362456i −0.779896 0.625909i \(-0.784728\pi\)
0.152105 + 0.988364i \(0.451395\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −110595. 191556.i −0.563544 0.976087i −0.997183 0.0750005i \(-0.976104\pi\)
0.433639 0.901087i \(-0.357229\pi\)
\(444\) 0 0
\(445\) 205729. 356332.i 1.03890 1.79943i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −255878. −1.26923 −0.634615 0.772828i \(-0.718841\pi\)
−0.634615 + 0.772828i \(0.718841\pi\)
\(450\) 0 0
\(451\) −50419.0 29109.4i −0.247880 0.143114i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 464.555 295551.i 0.00224396 1.42761i
\(456\) 0 0
\(457\) 159964. + 277065.i 0.765929 + 1.32663i 0.939754 + 0.341852i \(0.111054\pi\)
−0.173825 + 0.984777i \(0.555613\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 369557.i 1.73892i 0.494002 + 0.869461i \(0.335534\pi\)
−0.494002 + 0.869461i \(0.664466\pi\)
\(462\) 0 0
\(463\) 32715.0 0.152611 0.0763053 0.997084i \(-0.475688\pi\)
0.0763053 + 0.997084i \(0.475688\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −265325. + 153186.i −1.21659 + 0.702400i −0.964187 0.265222i \(-0.914555\pi\)
−0.252405 + 0.967622i \(0.581221\pi\)
\(468\) 0 0
\(469\) 321083. 184705.i 1.45973 0.839717i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −30996.0 + 53686.7i −0.138543 + 0.239963i
\(474\) 0 0
\(475\) 596460.i 2.64359i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 226801. + 130944.i 0.988493 + 0.570707i 0.904824 0.425787i \(-0.140003\pi\)
0.0836697 + 0.996494i \(0.473336\pi\)
\(480\) 0 0
\(481\) 87958.7 50783.0i 0.380180 0.219497i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 220913. + 382633.i 0.939158 + 1.62667i
\(486\) 0 0
\(487\) −41127.7 + 71235.3i −0.173411 + 0.300357i −0.939610 0.342246i \(-0.888812\pi\)
0.766199 + 0.642603i \(0.222146\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 102923. 0.426924 0.213462 0.976951i \(-0.431526\pi\)
0.213462 + 0.976951i \(0.431526\pi\)
\(492\) 0 0
\(493\) −92416.2 53356.5i −0.380237 0.219530i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −321170. 186101.i −1.30024 0.753420i
\(498\) 0 0
\(499\) −75028.2 129953.i −0.301317 0.521896i 0.675118 0.737710i \(-0.264093\pi\)
−0.976434 + 0.215814i \(0.930759\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 91806.6i 0.362859i −0.983404 0.181430i \(-0.941928\pi\)
0.983404 0.181430i \(-0.0580725\pi\)
\(504\) 0 0
\(505\) −34527.6 −0.135389
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 412600. 238215.i 1.59255 0.919460i 0.599684 0.800237i \(-0.295293\pi\)
0.992867 0.119224i \(-0.0380405\pi\)
\(510\) 0 0
\(511\) 92656.9 + 161071.i 0.354843 + 0.616843i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −60921.0 + 105518.i −0.229696 + 0.397844i
\(516\) 0 0
\(517\) 15721.7i 0.0588192i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −147768. 85314.0i −0.544384 0.314300i 0.202470 0.979289i \(-0.435103\pi\)
−0.746854 + 0.664988i \(0.768437\pi\)
\(522\) 0 0
\(523\) 85040.5 49098.2i 0.310901 0.179499i −0.336428 0.941709i \(-0.609219\pi\)
0.647330 + 0.762210i \(0.275886\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −88538.3 153353.i −0.318794 0.552167i
\(528\) 0 0
\(529\) −140707. + 243711.i −0.502810 + 0.870892i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 337430. 1.18776
\(534\) 0 0
\(535\) −569582. 328849.i −1.98998 1.14892i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 56450.5 + 177.461i 0.194308 + 0.000610838i
\(540\) 0 0
\(541\) 52833.7 + 91510.6i 0.180516 + 0.312663i 0.942056 0.335454i \(-0.108890\pi\)
−0.761540 + 0.648118i \(0.775557\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 122017.i 0.410798i
\(546\) 0 0
\(547\) −127121. −0.424855 −0.212428 0.977177i \(-0.568137\pi\)
−0.212428 + 0.977177i \(0.568137\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 157391. 90869.5i 0.518413 0.299306i
\(552\) 0 0
\(553\) 600.340 381938.i 0.00196312 1.24894i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15246.5 26407.6i 0.0491427 0.0851176i −0.840408 0.541955i \(-0.817684\pi\)
0.889550 + 0.456837i \(0.151018\pi\)
\(558\) 0 0
\(559\) 359300.i 1.14983i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −459404. 265237.i −1.44936 0.836791i −0.450921 0.892564i \(-0.648905\pi\)
−0.998444 + 0.0557725i \(0.982238\pi\)
\(564\) 0 0
\(565\) 240146. 138649.i 0.752279 0.434329i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −169366. 293351.i −0.523121 0.906072i −0.999638 0.0269067i \(-0.991434\pi\)
0.476517 0.879165i \(-0.341899\pi\)
\(570\) 0 0
\(571\) 53455.6 92587.8i 0.163954 0.283976i −0.772330 0.635222i \(-0.780909\pi\)
0.936283 + 0.351246i \(0.114242\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −999538. −3.02318
\(576\) 0 0
\(577\) −104337. 60238.8i −0.313390 0.180936i 0.335052 0.942200i \(-0.391246\pi\)
−0.648443 + 0.761264i \(0.724579\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 53590.0 92484.6i 0.158757 0.273979i
\(582\) 0 0
\(583\) 23854.9 + 41317.9i 0.0701844 + 0.121563i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 525818.i 1.52602i 0.646389 + 0.763008i \(0.276278\pi\)
−0.646389 + 0.763008i \(0.723722\pi\)
\(588\) 0 0
\(589\) 301573. 0.869283
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 64283.0 37113.8i 0.182804 0.105542i −0.405805 0.913960i \(-0.633009\pi\)
0.588610 + 0.808417i \(0.299676\pi\)
\(594\) 0 0
\(595\) −492609. 285441.i −1.39145 0.806274i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10990.7 19036.5i 0.0306318 0.0530558i −0.850303 0.526293i \(-0.823581\pi\)
0.880935 + 0.473237i \(0.156915\pi\)
\(600\) 0 0
\(601\) 77418.2i 0.214336i 0.994241 + 0.107168i \(0.0341782\pi\)
−0.994241 + 0.107168i \(0.965822\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −540039. 311792.i −1.47542 0.851832i
\(606\) 0 0
\(607\) 155765. 89931.2i 0.422760 0.244081i −0.273498 0.961873i \(-0.588181\pi\)
0.696257 + 0.717792i \(0.254847\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 45560.7 + 78913.5i 0.122042 + 0.211382i
\(612\) 0 0
\(613\) −314637. + 544968.i −0.837316 + 1.45027i 0.0548147 + 0.998497i \(0.482543\pi\)
−0.892131 + 0.451777i \(0.850790\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 52877.1 0.138899 0.0694493 0.997585i \(-0.477876\pi\)
0.0694493 + 0.997585i \(0.477876\pi\)
\(618\) 0 0
\(619\) 447040. + 258099.i 1.16672 + 0.673603i 0.952904 0.303271i \(-0.0980789\pi\)
0.213811 + 0.976875i \(0.431412\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −455493. 715.955i −1.17356 0.00184463i
\(624\) 0 0
\(625\) −277790. 481147.i −0.711143 1.23174i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 195651.i 0.494515i
\(630\) 0 0
\(631\) 193439. 0.485831 0.242915 0.970047i \(-0.421896\pi\)
0.242915 + 0.970047i \(0.421896\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −492766. + 284499.i −1.22206 + 0.705558i
\(636\) 0 0
\(637\) −283862. + 162700.i −0.699565 + 0.400967i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 376563. 652226.i 0.916477 1.58738i 0.111751 0.993736i \(-0.464354\pi\)
0.804725 0.593648i \(-0.202313\pi\)
\(642\) 0 0
\(643\) 7110.23i 0.0171974i −0.999963 0.00859868i \(-0.997263\pi\)
0.999963 0.00859868i \(-0.00273708\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 341808. + 197343.i 0.816534 + 0.471426i 0.849220 0.528040i \(-0.177073\pi\)
−0.0326859 + 0.999466i \(0.510406\pi\)
\(648\) 0 0
\(649\) 23845.8 13767.4i 0.0566137 0.0326860i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 115578. + 200186.i 0.271049 + 0.469470i 0.969131 0.246548i \(-0.0792963\pi\)
−0.698082 + 0.716018i \(0.745963\pi\)
\(654\) 0 0
\(655\) −547198. + 947775.i −1.27545 + 2.20914i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 772498. 1.77880 0.889399 0.457131i \(-0.151123\pi\)
0.889399 + 0.457131i \(0.151123\pi\)
\(660\) 0 0
\(661\) −195287. 112749.i −0.446962 0.258053i 0.259584 0.965720i \(-0.416414\pi\)
−0.706546 + 0.707667i \(0.749748\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 840468. 483484.i 1.90054 1.09330i
\(666\) 0 0
\(667\) 152278. + 263753.i 0.342282 + 0.592851i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 54895.8i 0.121925i
\(672\) 0 0
\(673\) 59564.6 0.131510 0.0657549 0.997836i \(-0.479054\pi\)
0.0657549 + 0.997836i \(0.479054\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −687131. + 396715.i −1.49921 + 0.865569i −1.00000 0.000912440i \(-0.999710\pi\)
−0.499210 + 0.866481i \(0.666376\pi\)
\(678\) 0 0
\(679\) 245222. 423199.i 0.531888 0.917921i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −46304.3 + 80201.3i −0.0992612 + 0.171925i −0.911379 0.411568i \(-0.864981\pi\)
0.812118 + 0.583493i \(0.198315\pi\)
\(684\) 0 0
\(685\) 58522.3i 0.124721i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −239474. 138261.i −0.504453 0.291246i
\(690\) 0 0
\(691\) −162273. + 93688.2i −0.339852 + 0.196213i −0.660206 0.751084i \(-0.729531\pi\)
0.320355 + 0.947298i \(0.396198\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −113308. 196255.i −0.234580 0.406304i
\(696\) 0 0
\(697\) 325003. 562921.i 0.668993 1.15873i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −326056. −0.663522 −0.331761 0.943363i \(-0.607643\pi\)
−0.331761 + 0.943363i \(0.607643\pi\)
\(702\) 0 0
\(703\) 288564. + 166603.i 0.583891 + 0.337110i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 19059.4 + 33132.0i 0.0381303 + 0.0662841i
\(708\) 0 0
\(709\) −32372.6 56070.9i −0.0643998 0.111544i 0.832028 0.554734i \(-0.187180\pi\)
−0.896428 + 0.443190i \(0.853847\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 505371.i 0.994102i
\(714\) 0 0
\(715\) −141813. −0.277398
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 616355. 355853.i 1.19227 0.688355i 0.233446 0.972370i \(-0.425000\pi\)
0.958820 + 0.284014i \(0.0916664\pi\)
\(720\) 0 0
\(721\) 134882. + 212.011i 0.259468 + 0.000407838i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −271191. + 469717.i −0.515941 + 0.893635i
\(726\) 0 0
\(727\) 763134.i 1.44388i −0.691954 0.721941i \(-0.743250\pi\)
0.691954 0.721941i \(-0.256750\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −599404. 346066.i −1.12172 0.647626i
\(732\) 0 0
\(733\) −17848.0 + 10304.6i −0.0332187 + 0.0191788i −0.516517 0.856277i \(-0.672772\pi\)
0.483299 + 0.875456i \(0.339439\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −88868.0 153924.i −0.163610 0.283381i
\(738\) 0 0
\(739\) 393194. 681032.i 0.719976 1.24703i −0.241033 0.970517i \(-0.577486\pi\)
0.961009 0.276518i \(-0.0891805\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −740479. −1.34133 −0.670664 0.741761i \(-0.733991\pi\)
−0.670664 + 0.741761i \(0.733991\pi\)
\(744\) 0 0
\(745\) −391372. 225959.i −0.705143 0.407114i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1144.42 + 728086.i −0.00203997 + 1.29783i
\(750\) 0 0
\(751\) 247292. + 428322.i 0.438460 + 0.759436i 0.997571 0.0696574i \(-0.0221906\pi\)
−0.559111 + 0.829093i \(0.688857\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.29885e6i 2.27859i
\(756\) 0 0
\(757\) −139399. −0.243258 −0.121629 0.992576i \(-0.538812\pi\)
−0.121629 + 0.992576i \(0.538812\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 207340. 119708.i 0.358025 0.206706i −0.310189 0.950675i \(-0.600392\pi\)
0.668214 + 0.743969i \(0.267059\pi\)
\(762\) 0 0
\(763\) −117085. + 67354.1i −0.201119 + 0.115695i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −79794.1 + 138208.i −0.135638 + 0.234931i
\(768\) 0 0
\(769\) 98701.5i 0.166906i −0.996512 0.0834528i \(-0.973405\pi\)
0.996512 0.0834528i \(-0.0265948\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 507921. + 293248.i 0.850036 + 0.490769i 0.860663 0.509175i \(-0.170049\pi\)
−0.0106268 + 0.999944i \(0.503383\pi\)
\(774\) 0 0
\(775\) −779435. + 450007.i −1.29771 + 0.749232i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 553500. + 958690.i 0.912100 + 1.57980i
\(780\) 0 0
\(781\) −89053.6 + 154245.i −0.145999 + 0.252877i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.33056e6 2.15921
\(786\) 0 0
\(787\) −129536. 74787.4i −0.209141 0.120748i 0.391771 0.920063i \(-0.371863\pi\)
−0.600912 + 0.799315i \(0.705196\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −265606. 153905.i −0.424507 0.245980i
\(792\) 0 0
\(793\) −159085. 275544.i −0.252978 0.438171i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 241092.i 0.379547i 0.981828 + 0.189774i \(0.0607754\pi\)
−0.981828 + 0.189774i \(0.939225\pi\)
\(798\) 0 0
\(799\) 175531. 0.274954
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 77215.6 44580.4i 0.119750 0.0691374i
\(804\) 0 0
\(805\) 810215. + 1.40844e6i 1.25028 + 2.17344i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 100933. 174820.i 0.154218 0.267113i −0.778556 0.627575i \(-0.784048\pi\)
0.932774 + 0.360462i \(0.117381\pi\)
\(810\) 0 0
\(811\) 1.16747e6i 1.77503i 0.460779 + 0.887515i \(0.347570\pi\)
−0.460779 + 0.887515i \(0.652430\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.18369e6 + 683402.i 1.78206 + 1.02887i
\(816\) 0 0
\(817\) 1.02082e6 589373.i 1.52935 0.882970i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −324585. 562198.i −0.481551 0.834071i 0.518225 0.855245i \(-0.326593\pi\)
−0.999776 + 0.0211734i \(0.993260\pi\)
\(822\) 0 0
\(823\) 245486. 425193.i 0.362432 0.627750i −0.625929 0.779880i \(-0.715280\pi\)
0.988360 + 0.152130i \(0.0486133\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 709017. 1.03668 0.518341 0.855174i \(-0.326550\pi\)
0.518341 + 0.855174i \(0.326550\pi\)
\(828\) 0 0
\(829\) 534645. + 308677.i 0.777958 + 0.449154i 0.835706 0.549177i \(-0.185059\pi\)
−0.0577480 + 0.998331i \(0.518392\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1981.33 + 630262.i −0.00285540 + 0.908304i
\(834\) 0 0
\(835\) −284583. 492912.i −0.408165 0.706963i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 493961.i 0.701728i −0.936426 0.350864i \(-0.885888\pi\)
0.936426 0.350864i \(-0.114112\pi\)
\(840\) 0 0
\(841\) −542019. −0.766342
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −383006. + 221129.i −0.536404 + 0.309693i
\(846\) 0 0
\(847\) −1085.07 + 690322.i −0.00151248 + 0.962243i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −279190. + 483571.i −0.385514 + 0.667730i
\(852\) 0 0
\(853\) 505142.i 0.694249i 0.937819 + 0.347124i \(0.112842\pi\)
−0.937819 + 0.347124i \(0.887158\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 969980. + 560018.i 1.32069 + 0.762501i 0.983839 0.179056i \(-0.0573043\pi\)
0.336852 + 0.941557i \(0.390638\pi\)
\(858\) 0 0
\(859\) −605141. + 349379.i −0.820107 + 0.473489i −0.850453 0.526050i \(-0.823672\pi\)
0.0303463 + 0.999539i \(0.490339\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 479533. + 830576.i 0.643868 + 1.11521i 0.984562 + 0.175038i \(0.0560049\pi\)
−0.340693 + 0.940175i \(0.610662\pi\)
\(864\) 0 0
\(865\) 347264. 601479.i 0.464117 0.803875i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −183263. −0.242681
\(870\) 0 0
\(871\) 892127. + 515069.i 1.17595 + 0.678937i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −771172. + 1.33087e6i −1.00724 + 1.73828i
\(876\) 0 0
\(877\) 498442. + 863326.i 0.648060 + 1.12247i 0.983586 + 0.180442i \(0.0577527\pi\)
−0.335526 + 0.942031i \(0.608914\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 494568.i 0.637198i −0.947890 0.318599i \(-0.896788\pi\)
0.947890 0.318599i \(-0.103212\pi\)
\(882\) 0 0
\(883\) 887278. 1.13799 0.568995 0.822341i \(-0.307333\pi\)
0.568995 + 0.822341i \(0.307333\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −542062. + 312960.i −0.688973 + 0.397779i −0.803227 0.595673i \(-0.796885\pi\)
0.114254 + 0.993452i \(0.463552\pi\)
\(888\) 0 0
\(889\) 545008. + 315804.i 0.689604 + 0.399589i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −149470. + 258890.i −0.187435 + 0.324647i
\(894\) 0 0
\(895\) 1.41581e6i 1.76750i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 237491. + 137115.i 0.293851 + 0.169655i
\(900\) 0 0
\(901\) −461309. + 266337.i −0.568253 + 0.328081i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.06159e6 1.83873e6i −1.29616 2.24502i
\(906\) 0 0
\(907\) 634131. 1.09835e6i 0.770840 1.33513i −0.166263 0.986081i \(-0.553170\pi\)
0.937103 0.349052i \(-0.113496\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.09985e6 1.32525 0.662625 0.748951i \(-0.269442\pi\)
0.662625 + 0.748951i \(0.269442\pi\)
\(912\) 0 0
\(913\) −44416.7 25644.0i −0.0532850 0.0307641i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.21152e6 + 1904.30i 1.44076 + 0.00226463i
\(918\) 0 0
\(919\) −430660. 745925.i −0.509922 0.883211i −0.999934 0.0114950i \(-0.996341\pi\)
0.490012 0.871716i \(-0.336992\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.03229e6i 1.21171i
\(924\) 0 0
\(925\) −994418. −1.16221
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 326247. 188359.i 0.378021 0.218250i −0.298936 0.954273i \(-0.596632\pi\)
0.676957 + 0.736023i \(0.263298\pi\)
\(930\) 0 0
\(931\) −927884. 539610.i −1.07052 0.622560i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −136590. + 236580.i −0.156241 + 0.270617i
\(936\) 0 0
\(937\) 417813.i 0.475885i −0.971279 0.237943i \(-0.923527\pi\)
0.971279 0.237943i \(-0.0764731\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −213031. 122994.i −0.240582 0.138900i 0.374862 0.927081i \(-0.377690\pi\)
−0.615444 + 0.788180i \(0.711023\pi\)
\(942\) 0 0
\(943\) −1.60656e6 + 927546.i −1.80665 + 1.04307i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −722964. 1.25221e6i −0.806152 1.39630i −0.915511 0.402294i \(-0.868213\pi\)
0.109359 0.994002i \(-0.465120\pi\)
\(948\) 0 0
\(949\) −258384. + 447533.i −0.286901 + 0.496928i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −907377. −0.999084 −0.499542 0.866290i \(-0.666498\pi\)
−0.499542 + 0.866290i \(0.666498\pi\)
\(954\) 0 0
\(955\) −170805. 98614.2i −0.187281 0.108127i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 56156.9 32304.6i 0.0610612 0.0351259i
\(960\) 0 0
\(961\) −234235. 405707.i −0.253633 0.439305i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.30132e6i 1.39742i
\(966\) 0 0
\(967\) −50286.2 −0.0537770 −0.0268885 0.999638i \(-0.508560\pi\)
−0.0268885 + 0.999638i \(0.508560\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −677500. + 391155.i −0.718573 + 0.414868i −0.814227 0.580546i \(-0.802839\pi\)
0.0956544 + 0.995415i \(0.469506\pi\)
\(972\) 0 0
\(973\) −125776. + 217062.i −0.132853 + 0.229275i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 638714. 1.10629e6i 0.669141 1.15899i −0.309004 0.951061i \(-0.599996\pi\)
0.978145 0.207925i \(-0.0666711\pi\)
\(978\) 0 0
\(979\) 218557.i 0.228033i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1.36250e6 786638.i −1.41003 0.814081i −0.414639 0.909986i \(-0.636092\pi\)
−0.995391 + 0.0959049i \(0.969426\pi\)
\(984\) 0 0
\(985\) 912930. 527080.i 0.940947 0.543256i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 987661. + 1.71068e6i 1.00975 + 1.74894i
\(990\) 0 0
\(991\) −162173. + 280892.i −0.165132 + 0.286017i −0.936702 0.350127i \(-0.886138\pi\)
0.771570 + 0.636144i \(0.219472\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2.16099e6 2.18276
\(996\) 0 0
\(997\) −1.57129e6 907185.i −1.58076 0.912652i −0.994748 0.102350i \(-0.967364\pi\)
−0.586012 0.810303i \(-0.699303\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.5.z.f.73.1 6
3.2 odd 2 28.5.h.a.17.2 yes 6
7.5 odd 6 inner 252.5.z.f.145.1 6
12.11 even 2 112.5.s.c.17.2 6
15.2 even 4 700.5.o.a.549.3 12
15.8 even 4 700.5.o.a.549.4 12
15.14 odd 2 700.5.s.a.101.2 6
21.2 odd 6 196.5.h.c.117.2 6
21.5 even 6 28.5.h.a.5.2 6
21.11 odd 6 196.5.b.a.97.4 6
21.17 even 6 196.5.b.a.97.3 6
21.20 even 2 196.5.h.c.129.2 6
84.11 even 6 784.5.c.e.97.3 6
84.47 odd 6 112.5.s.c.33.2 6
84.59 odd 6 784.5.c.e.97.4 6
105.47 odd 12 700.5.o.a.649.4 12
105.68 odd 12 700.5.o.a.649.3 12
105.89 even 6 700.5.s.a.201.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.5.h.a.5.2 6 21.5 even 6
28.5.h.a.17.2 yes 6 3.2 odd 2
112.5.s.c.17.2 6 12.11 even 2
112.5.s.c.33.2 6 84.47 odd 6
196.5.b.a.97.3 6 21.17 even 6
196.5.b.a.97.4 6 21.11 odd 6
196.5.h.c.117.2 6 21.2 odd 6
196.5.h.c.129.2 6 21.20 even 2
252.5.z.f.73.1 6 1.1 even 1 trivial
252.5.z.f.145.1 6 7.5 odd 6 inner
700.5.o.a.549.3 12 15.2 even 4
700.5.o.a.549.4 12 15.8 even 4
700.5.o.a.649.3 12 105.68 odd 12
700.5.o.a.649.4 12 105.47 odd 12
700.5.s.a.101.2 6 15.14 odd 2
700.5.s.a.201.2 6 105.89 even 6
784.5.c.e.97.3 6 84.11 even 6
784.5.c.e.97.4 6 84.59 odd 6