Properties

Label 252.4.b.e
Level $252$
Weight $4$
Character orbit 252.b
Analytic conductor $14.868$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 252.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.8684813214\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - x^{11} - 2 x^{10} - 6 x^{9} + 56 x^{7} - 448 x^{6} + 448 x^{5} - 3072 x^{3} - 8192 x^{2} - 32768 x + 262144\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{1} q^{2} + \beta_{2} q^{4} + ( -\beta_{1} - \beta_{8} ) q^{5} + ( -1 - \beta_{1} - \beta_{7} ) q^{7} + ( -2 - \beta_{3} ) q^{8} +O(q^{10})\) \( q -\beta_{1} q^{2} + \beta_{2} q^{4} + ( -\beta_{1} - \beta_{8} ) q^{5} + ( -1 - \beta_{1} - \beta_{7} ) q^{7} + ( -2 - \beta_{3} ) q^{8} + ( -5 + \beta_{2} + \beta_{3} - \beta_{5} + \beta_{8} - \beta_{11} ) q^{10} + ( -2 \beta_{1} - \beta_{4} - \beta_{10} - \beta_{11} ) q^{11} + ( 1 + 3 \beta_{1} - \beta_{2} - \beta_{3} + \beta_{4} + \beta_{5} - \beta_{8} - \beta_{9} ) q^{13} + ( -8 + \beta_{1} - \beta_{4} + \beta_{5} + \beta_{7} + \beta_{8} - \beta_{9} + \beta_{10} ) q^{14} + ( 4 + \beta_{1} + \beta_{4} + 2 \beta_{5} + \beta_{6} - 3 \beta_{8} - \beta_{11} ) q^{16} + ( 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} + \beta_{4} + \beta_{5} - \beta_{7} + 2 \beta_{9} + \beta_{10} - \beta_{11} ) q^{17} + ( 7 - 3 \beta_{1} + \beta_{2} - \beta_{3} + \beta_{4} + 2 \beta_{6} - \beta_{7} - \beta_{8} + \beta_{9} ) q^{19} + ( 14 + 5 \beta_{1} - \beta_{3} + \beta_{4} - 2 \beta_{5} + \beta_{6} + \beta_{8} + 3 \beta_{11} ) q^{20} + ( -17 - 4 \beta_{1} + 5 \beta_{2} - 4 \beta_{5} + \beta_{6} - \beta_{7} - 5 \beta_{8} - 2 \beta_{9} - \beta_{10} + \beta_{11} ) q^{22} + ( -3 + 8 \beta_{1} + 7 \beta_{2} - \beta_{3} + 3 \beta_{4} - 2 \beta_{5} - \beta_{7} - 2 \beta_{8} - \beta_{9} - 2 \beta_{10} + 2 \beta_{11} ) q^{23} + ( -18 - 19 \beta_{1} + 7 \beta_{2} + \beta_{3} + 5 \beta_{4} - 2 \beta_{5} - 2 \beta_{6} - \beta_{7} - \beta_{8} - \beta_{9} + 2 \beta_{10} - 2 \beta_{11} ) q^{25} + ( 28 - 4 \beta_{2} + 2 \beta_{4} + 2 \beta_{5} - 2 \beta_{7} + 2 \beta_{8} - 2 \beta_{9} - 2 \beta_{10} ) q^{26} + ( -30 + 13 \beta_{1} - 3 \beta_{2} - 3 \beta_{3} + 5 \beta_{4} + 4 \beta_{5} - \beta_{6} - 2 \beta_{7} + 5 \beta_{8} - 2 \beta_{10} + 3 \beta_{11} ) q^{28} + ( -21 + \beta_{1} + 11 \beta_{2} + 5 \beta_{3} - \beta_{4} - 3 \beta_{5} + 2 \beta_{6} - 3 \beta_{8} - \beta_{9} + 2 \beta_{10} - 4 \beta_{11} ) q^{29} + ( 37 + 3 \beta_{1} - 13 \beta_{2} + 5 \beta_{3} - 3 \beta_{4} - \beta_{5} + 2 \beta_{6} + 2 \beta_{7} + 3 \beta_{8} - \beta_{9} - 4 \beta_{10} + 2 \beta_{11} ) q^{31} + ( 14 - 5 \beta_{1} + 4 \beta_{2} + 9 \beta_{4} - 2 \beta_{5} - \beta_{6} - 6 \beta_{7} - \beta_{8} - 2 \beta_{9} + 2 \beta_{10} - \beta_{11} ) q^{32} + ( 15 + \beta_{2} + 3 \beta_{3} + 4 \beta_{4} - 3 \beta_{5} - 2 \beta_{6} + 6 \beta_{7} - 3 \beta_{8} + 6 \beta_{10} - \beta_{11} ) q^{34} + ( 7 + 9 \beta_{1} + 7 \beta_{2} + 7 \beta_{3} + 6 \beta_{4} + \beta_{5} + 2 \beta_{7} + \beta_{8} - \beta_{9} + \beta_{10} - 7 \beta_{11} ) q^{35} + ( -25 + 19 \beta_{1} + 5 \beta_{2} - 5 \beta_{3} - 3 \beta_{4} + 4 \beta_{5} - 2 \beta_{6} + \beta_{7} - \beta_{8} + \beta_{9} + 2 \beta_{10} ) q^{37} + ( 20 - 10 \beta_{1} + 8 \beta_{2} - \beta_{3} + 8 \beta_{4} + 5 \beta_{5} + \beta_{6} - 9 \beta_{7} - 6 \beta_{8} + 2 \beta_{9} + 7 \beta_{10} - 2 \beta_{11} ) q^{38} + ( 26 - 12 \beta_{1} - 8 \beta_{2} - 6 \beta_{4} + 8 \beta_{5} - 6 \beta_{7} + 4 \beta_{8} + 6 \beta_{9} + 2 \beta_{10} - 2 \beta_{11} ) q^{40} + ( -10 + 26 \beta_{1} + 20 \beta_{2} + 9 \beta_{4} - 3 \beta_{5} - 7 \beta_{7} + 4 \beta_{8} - 5 \beta_{10} + 5 \beta_{11} ) q^{41} + ( -2 + 8 \beta_{1} + 4 \beta_{3} - 4 \beta_{4} - 5 \beta_{5} + 3 \beta_{7} + 12 \beta_{8} + 4 \beta_{9} - 2 \beta_{10} - 4 \beta_{11} ) q^{43} + ( -20 + 19 \beta_{1} - 2 \beta_{2} + \beta_{3} - 7 \beta_{4} - 2 \beta_{5} + 3 \beta_{6} - 10 \beta_{7} + 19 \beta_{8} + 2 \beta_{9} - 2 \beta_{10} - \beta_{11} ) q^{44} + ( 75 - 11 \beta_{2} - 4 \beta_{3} - 14 \beta_{4} - 2 \beta_{5} + \beta_{6} - 3 \beta_{7} + 5 \beta_{8} - 3 \beta_{10} - 3 \beta_{11} ) q^{46} + ( 18 + 36 \beta_{1} - 2 \beta_{2} + 10 \beta_{3} - 12 \beta_{4} - 6 \beta_{5} + 4 \beta_{6} - 2 \beta_{9} - 2 \beta_{10} - 2 \beta_{11} ) q^{47} + ( -49 - 8 \beta_{1} + 22 \beta_{2} + 8 \beta_{3} - 6 \beta_{4} - 11 \beta_{5} - 2 \beta_{6} - 3 \beta_{7} - 2 \beta_{8} - 2 \beta_{9} - 2 \beta_{10} + 6 \beta_{11} ) q^{49} + ( 148 + 25 \beta_{1} + 8 \beta_{2} - 3 \beta_{3} - \beta_{5} + 3 \beta_{6} + 13 \beta_{7} + 14 \beta_{8} - 2 \beta_{9} - 3 \beta_{10} + 2 \beta_{11} ) q^{50} + ( 68 - 30 \beta_{1} - 2 \beta_{3} - 6 \beta_{4} - 2 \beta_{6} - 4 \beta_{7} + 2 \beta_{8} - 8 \beta_{9} - 4 \beta_{10} + 6 \beta_{11} ) q^{52} + ( -9 + 35 \beta_{1} + 11 \beta_{2} - 3 \beta_{3} - 7 \beta_{4} + \beta_{5} - 6 \beta_{6} - \beta_{8} - \beta_{9} + 4 \beta_{10} - 2 \beta_{11} ) q^{53} + ( -37 + 63 \beta_{1} + 35 \beta_{2} + 5 \beta_{3} - 15 \beta_{4} + 10 \beta_{5} + 2 \beta_{6} + 13 \beta_{7} - 9 \beta_{8} - \beta_{9} + 8 \beta_{10} - 10 \beta_{11} ) q^{55} + ( 148 + 24 \beta_{1} - 12 \beta_{2} - 5 \beta_{3} - 14 \beta_{4} + 8 \beta_{5} - 4 \beta_{6} + 6 \beta_{7} - 16 \beta_{8} - 6 \beta_{9} - 2 \beta_{10} - 2 \beta_{11} ) q^{56} + ( -46 + 30 \beta_{1} - 2 \beta_{2} - 8 \beta_{3} + 18 \beta_{4} - 6 \beta_{5} + 2 \beta_{6} - 12 \beta_{7} + 24 \beta_{8} + 2 \beta_{9} + 4 \beta_{10} + 10 \beta_{11} ) q^{58} + ( 90 + 48 \beta_{1} + 6 \beta_{2} - 14 \beta_{3} - 8 \beta_{4} + 16 \beta_{5} + 4 \beta_{6} + 6 \beta_{7} - 4 \beta_{8} + 6 \beta_{9} + 2 \beta_{10} + 2 \beta_{11} ) q^{59} + ( 1 + 57 \beta_{1} - 5 \beta_{2} + 3 \beta_{3} + 21 \beta_{4} + 9 \beta_{5} - 8 \beta_{7} - 23 \beta_{8} + 3 \beta_{9} - 4 \beta_{10} - 8 \beta_{11} ) q^{61} + ( -46 - 40 \beta_{1} + 6 \beta_{2} + 8 \beta_{3} - 14 \beta_{4} - 14 \beta_{5} - 6 \beta_{6} - 20 \beta_{7} + 8 \beta_{8} + 2 \beta_{9} - 4 \beta_{10} + 10 \beta_{11} ) q^{62} + ( 238 - 5 \beta_{1} - 12 \beta_{2} - 2 \beta_{3} - 3 \beta_{4} + 10 \beta_{5} + 3 \beta_{6} + 10 \beta_{7} + 23 \beta_{8} - 6 \beta_{9} + 2 \beta_{10} + 3 \beta_{11} ) q^{64} + ( -18 - 36 \beta_{1} + 2 \beta_{2} - 10 \beta_{3} + 12 \beta_{4} + 6 \beta_{5} - 4 \beta_{6} + 2 \beta_{9} + 2 \beta_{10} + 2 \beta_{11} ) q^{65} + ( -2 + 72 \beta_{1} - 4 \beta_{2} + 8 \beta_{3} + 22 \beta_{4} + \beta_{5} - 3 \beta_{7} - 16 \beta_{8} + 8 \beta_{9} - 6 \beta_{11} ) q^{67} + ( 138 + 5 \beta_{1} - 12 \beta_{2} + 7 \beta_{3} + 13 \beta_{4} - 2 \beta_{5} + \beta_{6} + 12 \beta_{7} + 25 \beta_{8} + 12 \beta_{9} - 4 \beta_{10} - \beta_{11} ) q^{68} + ( 223 - 2 \beta_{1} - 3 \beta_{2} - 10 \beta_{3} + 20 \beta_{4} - 18 \beta_{5} - \beta_{6} - 3 \beta_{7} + 11 \beta_{8} - 6 \beta_{9} - 3 \beta_{10} + 17 \beta_{11} ) q^{70} + ( -3 - 22 \beta_{1} - \beta_{2} + 7 \beta_{3} - 17 \beta_{4} - 10 \beta_{5} + 7 \beta_{7} + 32 \beta_{8} + 7 \beta_{9} + 2 \beta_{10} - 2 \beta_{11} ) q^{71} + ( -22 + 42 \beta_{1} + 42 \beta_{2} + 2 \beta_{3} + 4 \beta_{4} - 20 \beta_{5} - 2 \beta_{7} + 6 \beta_{8} + 2 \beta_{9} - 22 \beta_{10} - 2 \beta_{11} ) q^{73} + ( -120 + 24 \beta_{1} - 20 \beta_{2} - 5 \beta_{3} + 8 \beta_{4} + 9 \beta_{5} + \beta_{6} + 15 \beta_{7} - 18 \beta_{8} - 2 \beta_{9} - \beta_{10} - 10 \beta_{11} ) q^{74} + ( 86 - 6 \beta_{1} - 6 \beta_{3} + 28 \beta_{4} + 24 \beta_{5} - 2 \beta_{6} + 14 \beta_{7} + 14 \beta_{8} - 6 \beta_{9} + 22 \beta_{10} - 8 \beta_{11} ) q^{76} + ( -55 + 22 \beta_{1} - 39 \beta_{2} + 3 \beta_{3} + 33 \beta_{4} - 7 \beta_{5} - 6 \beta_{6} + 2 \beta_{7} - 22 \beta_{8} - 11 \beta_{9} + 6 \beta_{10} + 4 \beta_{11} ) q^{77} + ( -26 - 66 \beta_{1} + 34 \beta_{2} + 18 \beta_{3} - 6 \beta_{4} - 9 \beta_{5} - 17 \beta_{7} - 8 \beta_{8} + 18 \beta_{9} - 4 \beta_{10} + 4 \beta_{11} ) q^{79} + ( -252 - 34 \beta_{1} + 24 \beta_{2} + 2 \beta_{3} + 14 \beta_{4} + 8 \beta_{5} - 6 \beta_{6} + 20 \beta_{7} - 34 \beta_{8} - 8 \beta_{9} + 20 \beta_{10} - 6 \beta_{11} ) q^{80} + ( 215 - 31 \beta_{2} - 21 \beta_{3} - 40 \beta_{4} + \beta_{5} - 2 \beta_{6} + 2 \beta_{7} + \beta_{8} - 4 \beta_{9} + 2 \beta_{10} - \beta_{11} ) q^{82} + ( -42 - 96 \beta_{1} - 70 \beta_{2} - 2 \beta_{3} + 20 \beta_{4} - 10 \beta_{5} + 4 \beta_{6} - 12 \beta_{7} + 16 \beta_{8} + 2 \beta_{9} - 18 \beta_{10} + 18 \beta_{11} ) q^{83} + ( -83 + 35 \beta_{1} + 33 \beta_{2} + 31 \beta_{3} - 15 \beta_{4} + 2 \beta_{5} - 2 \beta_{6} + 23 \beta_{7} - 5 \beta_{8} - 11 \beta_{9} + 6 \beta_{10} - 16 \beta_{11} ) q^{85} + ( 14 - 12 \beta_{1} + 6 \beta_{2} - 3 \beta_{3} - 13 \beta_{5} + 5 \beta_{6} + 3 \beta_{7} - 32 \beta_{8} + 6 \beta_{9} + 3 \beta_{10} + 12 \beta_{11} ) q^{86} + ( -178 + 10 \beta_{1} - 16 \beta_{2} - 16 \beta_{3} - 4 \beta_{4} + 24 \beta_{5} + 2 \beta_{6} - 6 \beta_{7} - 22 \beta_{8} - 6 \beta_{9} + 18 \beta_{10} + 20 \beta_{11} ) q^{88} + ( -10 - 232 \beta_{1} + 28 \beta_{2} - 8 \beta_{3} - 43 \beta_{4} + 5 \beta_{5} - 15 \beta_{7} - 30 \beta_{8} - 8 \beta_{9} - 9 \beta_{10} + 9 \beta_{11} ) q^{89} + ( -147 + 105 \beta_{1} - 29 \beta_{2} + 13 \beta_{3} - 39 \beta_{4} - 21 \beta_{5} + 2 \beta_{6} + 2 \beta_{7} + 5 \beta_{8} - \beta_{9} - 16 \beta_{10} - 6 \beta_{11} ) q^{91} + ( -352 - 91 \beta_{1} + 6 \beta_{2} + 7 \beta_{3} + 3 \beta_{4} + 6 \beta_{5} + 9 \beta_{6} - 6 \beta_{7} - 27 \beta_{8} - 6 \beta_{9} + 2 \beta_{10} + 5 \beta_{11} ) q^{92} + ( -352 - 12 \beta_{1} - 32 \beta_{2} + 2 \beta_{3} - 18 \beta_{5} - 2 \beta_{6} - 30 \beta_{7} + 36 \beta_{8} + 4 \beta_{9} + 2 \beta_{10} + 20 \beta_{11} ) q^{94} + ( 26 - 30 \beta_{1} - 58 \beta_{2} + 6 \beta_{3} + 4 \beta_{4} + 24 \beta_{5} + 2 \beta_{7} - 46 \beta_{8} + 6 \beta_{9} + 18 \beta_{10} - 14 \beta_{11} ) q^{95} + ( 26 - 114 \beta_{1} - 58 \beta_{2} + 6 \beta_{3} - 36 \beta_{4} + 26 \beta_{7} - 34 \beta_{8} + 6 \beta_{9} + 10 \beta_{10} - 22 \beta_{11} ) q^{97} + ( -276 + 61 \beta_{1} - 16 \beta_{2} - 9 \beta_{3} - 54 \beta_{4} - 17 \beta_{5} - 3 \beta_{6} + 9 \beta_{7} + 56 \beta_{8} + 8 \beta_{9} - 7 \beta_{10} + 2 \beta_{11} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - q^{2} + 5q^{4} - 10q^{7} - 25q^{8} + O(q^{10}) \) \( 12q - q^{2} + 5q^{4} - 10q^{7} - 25q^{8} - 56q^{10} - 101q^{14} + 41q^{16} + 84q^{19} + 172q^{20} - 182q^{22} - 216q^{25} + 300q^{26} - 379q^{28} - 200q^{29} + 384q^{31} + 159q^{32} + 164q^{34} + 84q^{35} - 244q^{37} + 268q^{38} + 316q^{40} - 190q^{44} + 894q^{46} + 280q^{47} - 424q^{49} + 1771q^{50} + 796q^{52} + 16q^{53} - 212q^{55} + 1759q^{56} - 570q^{58} + 1168q^{59} - 384q^{62} + 2705q^{64} - 280q^{65} + 1552q^{68} + 2592q^{70} - 1622q^{74} + 788q^{76} - 968q^{77} - 3060q^{80} + 2540q^{82} - 968q^{83} - 852q^{85} + 258q^{86} - 2186q^{88} - 1648q^{91} - 4298q^{92} - 4256q^{94} - 3137q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{12} - x^{11} - 2 x^{10} - 6 x^{9} + 56 x^{7} - 448 x^{6} + 448 x^{5} - 3072 x^{3} - 8192 x^{2} - 32768 x + 262144\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} \)
\(\beta_{3}\)\(=\)\( \nu^{3} - 2 \)
\(\beta_{4}\)\(=\)\((\)\( \nu^{11} - \nu^{10} - 2 \nu^{9} - 6 \nu^{8} + 56 \nu^{6} - 448 \nu^{5} + 448 \nu^{4} - 3072 \nu^{2} - 8192 \nu - 32768 \)\()/8192\)
\(\beta_{5}\)\(=\)\((\)\( 7 \nu^{11} + 11 \nu^{10} + 32 \nu^{9} + 50 \nu^{8} - 172 \nu^{7} + 904 \nu^{6} - 1232 \nu^{5} + 2240 \nu^{4} + 1408 \nu^{3} - 31744 \nu^{2} - 96256 \nu - 786432 \)\()/24576\)
\(\beta_{6}\)\(=\)\((\)\( -5 \nu^{11} - 2 \nu^{10} - 15 \nu^{9} - 84 \nu^{8} + 138 \nu^{7} + 104 \nu^{6} + 1272 \nu^{5} + 4480 \nu^{4} - 2368 \nu^{3} + 40960 \nu^{2} + 33792 \nu + 274432 \)\()/12288\)
\(\beta_{7}\)\(=\)\((\)\( -13 \nu^{11} - 47 \nu^{10} - 74 \nu^{9} - 26 \nu^{8} + 40 \nu^{7} - 1048 \nu^{6} + 5792 \nu^{5} + 3904 \nu^{4} + 8960 \nu^{3} + 74752 \nu^{2} + 323584 \nu + 1671168 \)\()/49152\)
\(\beta_{8}\)\(=\)\((\)\( 6 \nu^{11} + 11 \nu^{10} + 19 \nu^{9} + 10 \nu^{8} + 58 \nu^{7} + 688 \nu^{6} - 1480 \nu^{5} - 1984 \nu^{4} - 4160 \nu^{3} - 22528 \nu^{2} - 128000 \nu - 598016 \)\()/12288\)
\(\beta_{9}\)\(=\)\((\)\( 19 \nu^{11} + 25 \nu^{10} + 78 \nu^{9} - 42 \nu^{8} + 120 \nu^{7} + 488 \nu^{6} - 1824 \nu^{5} - 2240 \nu^{4} - 21760 \nu^{3} - 60416 \nu^{2} - 393216 \nu - 1384448 \)\()/24576\)
\(\beta_{10}\)\(=\)\((\)\( -41 \nu^{11} - 75 \nu^{10} - 26 \nu^{9} - 194 \nu^{8} - 8 \nu^{7} - 2232 \nu^{6} + 5984 \nu^{5} + 6720 \nu^{4} - 3840 \nu^{3} + 205824 \nu^{2} + 790528 \nu + 3129344 \)\()/49152\)
\(\beta_{11}\)\(=\)\((\)\( -29 \nu^{11} - 51 \nu^{10} - 86 \nu^{9} - 146 \nu^{8} - 416 \nu^{7} - 1944 \nu^{6} + 7616 \nu^{5} + 2112 \nu^{4} + 23040 \nu^{3} + 144384 \nu^{2} + 643072 \nu + 2564096 \)\()/24576\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2}\)
\(\nu^{3}\)\(=\)\(\beta_{3} + 2\)
\(\nu^{4}\)\(=\)\(-\beta_{11} - 3 \beta_{8} + \beta_{6} + 2 \beta_{5} + \beta_{4} + \beta_{1} + 4\)
\(\nu^{5}\)\(=\)\(\beta_{11} - 2 \beta_{10} + 2 \beta_{9} + \beta_{8} + 6 \beta_{7} + \beta_{6} + 2 \beta_{5} - 9 \beta_{4} - 4 \beta_{2} + 5 \beta_{1} - 14\)
\(\nu^{6}\)\(=\)\(3 \beta_{11} + 2 \beta_{10} - 6 \beta_{9} + 23 \beta_{8} + 10 \beta_{7} + 3 \beta_{6} + 10 \beta_{5} - 3 \beta_{4} - 2 \beta_{3} - 12 \beta_{2} - 5 \beta_{1} + 238\)
\(\nu^{7}\)\(=\)\(-33 \beta_{11} + 14 \beta_{10} - 2 \beta_{9} + 7 \beta_{8} + 38 \beta_{7} + 11 \beta_{6} - 38 \beta_{5} - 31 \beta_{4} + 30 \beta_{3} - 12 \beta_{2} + 219 \beta_{1} - 38\)
\(\nu^{8}\)\(=\)\(-85 \beta_{11} + 6 \beta_{10} - 66 \beta_{9} - 69 \beta_{8} + 94 \beta_{7} - 41 \beta_{6} + 58 \beta_{5} - 155 \beta_{4} - 30 \beta_{3} + 196 \beta_{2} - 81 \beta_{1} + 306\)
\(\nu^{9}\)\(=\)\(-77 \beta_{11} + 302 \beta_{10} + 150 \beta_{9} - 5 \beta_{8} - 26 \beta_{7} - 57 \beta_{6} + 186 \beta_{5} - 291 \beta_{4} + 210 \beta_{3} - 92 \beta_{2} + 271 \beta_{1} + 4378\)
\(\nu^{10}\)\(=\)\(75 \beta_{11} - 514 \beta_{10} - 106 \beta_{9} - 477 \beta_{8} - 970 \beta_{7} + 319 \beta_{6} - 166 \beta_{5} - 859 \beta_{4} - 118 \beta_{3} + 452 \beta_{2} + 3639 \beta_{1} + 12586\)
\(\nu^{11}\)\(=\)\(139 \beta_{11} - 882 \beta_{10} + 1030 \beta_{9} - 397 \beta_{8} + 1670 \beta_{7} - 209 \beta_{6} - 6 \beta_{5} + 1509 \beta_{4} + 234 \beta_{3} + 3396 \beta_{2} + 13959 \beta_{1} + 34554\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
2.82801 + 0.0488466i
2.82801 0.0488466i
2.16644 + 1.81839i
2.16644 1.81839i
0.965027 + 2.65871i
0.965027 2.65871i
−0.951271 + 2.66366i
−0.951271 2.66366i
−1.72458 + 2.24184i
−1.72458 2.24184i
−2.78362 + 0.501431i
−2.78362 0.501431i
−2.82801 0.0488466i 0 7.99523 + 0.276277i 16.6517i 0 −15.0420 + 10.8045i −22.5971 1.17185i 0 −0.813380 + 47.0912i
55.2 −2.82801 + 0.0488466i 0 7.99523 0.276277i 16.6517i 0 −15.0420 10.8045i −22.5971 + 1.17185i 0 −0.813380 47.0912i
55.3 −2.16644 1.81839i 0 1.38692 + 7.87886i 4.47531i 0 14.9825 + 10.8869i 11.3222 19.5910i 0 8.13786 9.69549i
55.4 −2.16644 + 1.81839i 0 1.38692 7.87886i 4.47531i 0 14.9825 10.8869i 11.3222 + 19.5910i 0 8.13786 + 9.69549i
55.5 −0.965027 2.65871i 0 −6.13744 + 5.13145i 19.4608i 0 −1.95109 18.4172i 19.5658 + 11.3657i 0 −51.7405 + 18.7802i
55.6 −0.965027 + 2.65871i 0 −6.13744 5.13145i 19.4608i 0 −1.95109 + 18.4172i 19.5658 11.3657i 0 −51.7405 18.7802i
55.7 0.951271 2.66366i 0 −6.19017 5.06772i 10.8462i 0 15.1344 10.6748i −19.3872 + 11.6677i 0 28.8905 + 10.3176i
55.8 0.951271 + 2.66366i 0 −6.19017 + 5.06772i 10.8462i 0 15.1344 + 10.6748i −19.3872 11.6677i 0 28.8905 10.3176i
55.9 1.72458 2.24184i 0 −2.05167 7.73244i 6.58775i 0 −15.1925 + 10.5918i −20.8731 8.73568i 0 −14.7687 11.3611i
55.10 1.72458 + 2.24184i 0 −2.05167 + 7.73244i 6.58775i 0 −15.1925 10.5918i −20.8731 + 8.73568i 0 −14.7687 + 11.3611i
55.11 2.78362 0.501431i 0 7.49713 2.79159i 4.57514i 0 −2.93118 18.2868i 19.4694 11.5300i 0 2.29411 + 12.7355i
55.12 2.78362 + 0.501431i 0 7.49713 + 2.79159i 4.57514i 0 −2.93118 + 18.2868i 19.4694 + 11.5300i 0 2.29411 12.7355i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 55.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 252.4.b.e 12
3.b odd 2 1 84.4.b.b yes 12
4.b odd 2 1 252.4.b.f 12
7.b odd 2 1 252.4.b.f 12
12.b even 2 1 84.4.b.a 12
21.c even 2 1 84.4.b.a 12
24.f even 2 1 1344.4.b.h 12
24.h odd 2 1 1344.4.b.g 12
28.d even 2 1 inner 252.4.b.e 12
84.h odd 2 1 84.4.b.b yes 12
168.e odd 2 1 1344.4.b.g 12
168.i even 2 1 1344.4.b.h 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.4.b.a 12 12.b even 2 1
84.4.b.a 12 21.c even 2 1
84.4.b.b yes 12 3.b odd 2 1
84.4.b.b yes 12 84.h odd 2 1
252.4.b.e 12 1.a even 1 1 trivial
252.4.b.e 12 28.d even 2 1 inner
252.4.b.f 12 4.b odd 2 1
252.4.b.f 12 7.b odd 2 1
1344.4.b.g 12 24.h odd 2 1
1344.4.b.g 12 168.e odd 2 1
1344.4.b.h 12 24.f even 2 1
1344.4.b.h 12 168.i even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(252, [\chi])\):

\( T_{5}^{12} + 858 T_{5}^{10} + 249644 T_{5}^{8} + 29440120 T_{5}^{6} + 1456436096 T_{5}^{4} + 30453516288 T_{5}^{2} + 224760987648 \)
\( T_{11}^{12} + 10414 T_{11}^{10} + 39015876 T_{11}^{8} + 64285126792 T_{11}^{6} + \)\(45\!\cdots\!56\)\( T_{11}^{4} + \)\(12\!\cdots\!68\)\( T_{11}^{2} + \)\(58\!\cdots\!00\)\( \)
\( T_{19}^{6} - 42 T_{19}^{5} - 27084 T_{19}^{4} + 1835880 T_{19}^{3} + 99824480 T_{19}^{2} - 8618904192 T_{19} + 111463534080 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 262144 + 32768 T - 8192 T^{2} + 3072 T^{3} - 448 T^{5} - 448 T^{6} - 56 T^{7} + 6 T^{9} - 2 T^{10} + T^{11} + T^{12} \)
$3$ \( T^{12} \)
$5$ \( 224760987648 + 30453516288 T^{2} + 1456436096 T^{4} + 29440120 T^{6} + 249644 T^{8} + 858 T^{10} + T^{12} \)
$7$ \( 1628413597910449 + 47475615099430 T + 3626417246662 T^{2} - 33977737094 T^{3} + 10113931583 T^{4} + 460310116 T^{5} + 96999028 T^{6} + 1342012 T^{7} + 85967 T^{8} - 842 T^{9} + 262 T^{10} + 10 T^{11} + T^{12} \)
$11$ \( 584217371305280000 + 12525766859191168 T^{2} + 45887475687456 T^{4} + 64285126792 T^{6} + 39015876 T^{8} + 10414 T^{10} + T^{12} \)
$13$ \( 62601055759761408 + 2779995917647872 T^{2} + 19645357400064 T^{4} + 39003959808 T^{6} + 30771776 T^{8} + 9976 T^{10} + T^{12} \)
$17$ \( \)\(59\!\cdots\!12\)\( + 9486366618786324480 T^{2} + 8294186258955776 T^{4} + 2811705354936 T^{6} + 454587148 T^{8} + 34826 T^{10} + T^{12} \)
$19$ \( ( 111463534080 - 8618904192 T + 99824480 T^{2} + 1835880 T^{3} - 27084 T^{4} - 42 T^{5} + T^{6} )^{2} \)
$23$ \( \)\(17\!\cdots\!12\)\( + \)\(16\!\cdots\!32\)\( T^{2} + 61948036290738720 T^{4} + 11431676066248 T^{6} + 1104167940 T^{8} + 53182 T^{10} + T^{12} \)
$29$ \( ( -3698977199040 - 95119425984 T + 2688214256 T^{2} - 2852896 T^{3} - 98436 T^{4} + 100 T^{5} + T^{6} )^{2} \)
$31$ \( ( 34547086393344 - 622925807616 T + 1743943680 T^{2} + 21663744 T^{3} - 99232 T^{4} - 192 T^{5} + T^{6} )^{2} \)
$37$ \( ( 11485380096 - 1692626304 T + 29975392 T^{2} + 3382616 T^{3} - 73420 T^{4} + 122 T^{5} + T^{6} )^{2} \)
$41$ \( \)\(18\!\cdots\!00\)\( + \)\(23\!\cdots\!32\)\( T^{2} + 8929551139378138112 T^{4} + 958649263640824 T^{6} + 35274441548 T^{8} + 373146 T^{10} + T^{12} \)
$43$ \( \)\(47\!\cdots\!12\)\( + \)\(10\!\cdots\!64\)\( T^{2} + 24122851474400416256 T^{4} + 1464388464157760 T^{6} + 34667163920 T^{8} + 328092 T^{10} + T^{12} \)
$47$ \( ( 118618190512128 + 3408906829824 T + 24842032128 T^{2} - 536640 T^{3} - 302608 T^{4} - 140 T^{5} + T^{6} )^{2} \)
$53$ \( ( -24896048217408 + 584664527232 T + 5115119536 T^{2} - 37315648 T^{3} - 272924 T^{4} - 8 T^{5} + T^{6} )^{2} \)
$59$ \( ( -1915391252459520 - 29557612136448 T + 64356818688 T^{2} + 311343360 T^{3} - 572048 T^{4} - 584 T^{5} + T^{6} )^{2} \)
$61$ \( \)\(19\!\cdots\!00\)\( + \)\(41\!\cdots\!28\)\( T^{2} + \)\(13\!\cdots\!56\)\( T^{4} + 165531877369638912 T^{6} + 808904152832 T^{8} + 1590928 T^{10} + T^{12} \)
$67$ \( \)\(64\!\cdots\!68\)\( + \)\(50\!\cdots\!44\)\( T^{2} + \)\(13\!\cdots\!28\)\( T^{4} + 154614504282475968 T^{6} + 710502378800 T^{8} + 1407700 T^{10} + T^{12} \)
$71$ \( \)\(62\!\cdots\!00\)\( + \)\(22\!\cdots\!72\)\( T^{2} + \)\(30\!\cdots\!24\)\( T^{4} + 208738353017380424 T^{6} + 753608341380 T^{8} + 1375838 T^{10} + T^{12} \)
$73$ \( \)\(22\!\cdots\!32\)\( + \)\(48\!\cdots\!36\)\( T^{2} + \)\(49\!\cdots\!40\)\( T^{4} + 1948491776553389568 T^{6} + 3675179437760 T^{8} + 3228968 T^{10} + T^{12} \)
$79$ \( \)\(96\!\cdots\!88\)\( + \)\(18\!\cdots\!12\)\( T^{2} + \)\(11\!\cdots\!08\)\( T^{4} + 3351704066729440704 T^{6} + 4957994738864 T^{8} + 3584020 T^{10} + T^{12} \)
$83$ \( ( -178662844658221056 + 77003384168448 T + 1331374132224 T^{2} - 508306752 T^{3} - 2160016 T^{4} + 484 T^{5} + T^{6} )^{2} \)
$89$ \( \)\(18\!\cdots\!72\)\( + \)\(12\!\cdots\!92\)\( T^{2} + \)\(73\!\cdots\!16\)\( T^{4} + 14989058094622396408 T^{6} + 14072024042060 T^{8} + 6134874 T^{10} + T^{12} \)
$97$ \( \)\(29\!\cdots\!88\)\( + \)\(30\!\cdots\!32\)\( T^{2} + \)\(31\!\cdots\!56\)\( T^{4} + 9820780041931402752 T^{6} + 11706611210432 T^{8} + 5772328 T^{10} + T^{12} \)
show more
show less