Properties

Label 252.4.a
Level $252$
Weight $4$
Character orbit 252.a
Rep. character $\chi_{252}(1,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $6$
Sturm bound $192$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 252.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(192\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(252))\).

Total New Old
Modular forms 156 8 148
Cusp forms 132 8 124
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)FrickeDim
\(-\)\(+\)\(+\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(2\)
Plus space\(+\)\(4\)
Minus space\(-\)\(4\)

Trace form

\( 8 q - 18 q^{5} + O(q^{10}) \) \( 8 q - 18 q^{5} + 12 q^{11} + 14 q^{13} - 12 q^{17} + 46 q^{19} + 24 q^{23} - 108 q^{25} - 132 q^{29} - 52 q^{31} - 42 q^{35} + 316 q^{37} + 252 q^{41} - 740 q^{43} + 924 q^{47} + 392 q^{49} - 312 q^{53} + 296 q^{55} - 846 q^{59} - 934 q^{61} - 732 q^{65} + 696 q^{67} + 456 q^{71} + 648 q^{73} - 420 q^{77} + 632 q^{79} - 390 q^{83} - 460 q^{85} + 2232 q^{89} + 350 q^{91} - 1032 q^{95} - 204 q^{97} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(252))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7
252.4.a.a 252.a 1.a $1$ $14.868$ \(\Q\) None 84.4.a.b \(0\) \(0\) \(-14\) \(-7\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-14q^{5}-7q^{7}-4q^{11}+54q^{13}+\cdots\)
252.4.a.b 252.a 1.a $1$ $14.868$ \(\Q\) None 84.4.a.a \(0\) \(0\) \(-6\) \(7\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-6q^{5}+7q^{7}-6^{2}q^{11}+62q^{13}+\cdots\)
252.4.a.c 252.a 1.a $1$ $14.868$ \(\Q\) None 28.4.a.b \(0\) \(0\) \(-6\) \(7\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-6q^{5}+7q^{7}+12q^{11}-82q^{13}+\cdots\)
252.4.a.d 252.a 1.a $1$ $14.868$ \(\Q\) None 28.4.a.a \(0\) \(0\) \(8\) \(-7\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+8q^{5}-7q^{7}+40q^{11}-12q^{13}+\cdots\)
252.4.a.e 252.a 1.a $2$ $14.868$ \(\Q(\sqrt{7}) \) None 252.4.a.e \(0\) \(0\) \(0\) \(-14\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{5}-7q^{7}-13\beta q^{11}-30q^{13}+\cdots\)
252.4.a.f 252.a 1.a $2$ $14.868$ \(\Q(\sqrt{7}) \) None 252.4.a.f \(0\) \(0\) \(0\) \(14\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{5}+7q^{7}+\beta q^{11}+26q^{13}-5\beta q^{17}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(252))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(252)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 2}\)