Properties

Label 252.2.x
Level $252$
Weight $2$
Character orbit 252.x
Rep. character $\chi_{252}(41,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $16$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 252.x (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(252, [\chi])\).

Total New Old
Modular forms 108 16 92
Cusp forms 84 16 68
Eisenstein series 24 0 24

Trace form

\( 16 q - q^{7} + O(q^{10}) \) \( 16 q - q^{7} + 6 q^{11} - 12 q^{15} + 9 q^{21} + 6 q^{23} - 8 q^{25} - 12 q^{29} + 4 q^{37} + 18 q^{39} + 4 q^{43} - 5 q^{49} - 18 q^{51} - 42 q^{57} - 27 q^{63} - 24 q^{65} + 14 q^{67} - 21 q^{77} + 20 q^{79} - 36 q^{81} + 6 q^{85} - 18 q^{91} - 24 q^{93} - 60 q^{95} + 90 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(252, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
252.2.x.a \(16\) \(2.012\) \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(0\) \(0\) \(-1\) \(q+(-\beta _{1}-\beta _{8})q^{3}+\beta _{15}q^{5}+(-\beta _{1}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(252, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(252, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)