Properties

Label 252.2.w.a
Level 252
Weight 2
Character orbit 252.w
Analytic conductor 2.012
Analytic rank 0
Dimension 16
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 252.w (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.01223013094\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{10} q^{3} + \beta_{7} q^{5} + ( \beta_{3} - \beta_{8} ) q^{7} -\beta_{4} q^{9} +O(q^{10})\) \( q -\beta_{10} q^{3} + \beta_{7} q^{5} + ( \beta_{3} - \beta_{8} ) q^{7} -\beta_{4} q^{9} + ( \beta_{1} - 2 \beta_{2} + \beta_{4} + \beta_{7} + \beta_{10} - \beta_{11} - \beta_{12} - \beta_{14} + \beta_{15} ) q^{11} + ( -\beta_{4} + \beta_{5} + \beta_{7} + \beta_{10} - \beta_{13} - \beta_{14} ) q^{13} + ( -1 + \beta_{1} - 2 \beta_{6} - \beta_{7} - \beta_{10} + \beta_{11} - \beta_{12} + \beta_{13} ) q^{15} + ( -2 \beta_{1} + \beta_{5} + \beta_{6} + \beta_{7} + \beta_{10} - \beta_{11} - \beta_{13} + \beta_{15} ) q^{17} + ( 1 - 2 \beta_{1} + 2 \beta_{2} - \beta_{4} + 2 \beta_{6} + \beta_{7} + \beta_{10} + \beta_{12} - 2 \beta_{13} + \beta_{14} - \beta_{15} ) q^{19} + ( 1 - \beta_{2} + \beta_{3} + \beta_{4} + \beta_{5} + 2 \beta_{7} + \beta_{9} + \beta_{10} - \beta_{11} - 2 \beta_{12} - \beta_{13} - \beta_{14} + 2 \beta_{15} ) q^{21} + ( 2 + \beta_{1} + \beta_{2} - 2 \beta_{3} + \beta_{6} - \beta_{7} + \beta_{8} - \beta_{9} + \beta_{11} + 2 \beta_{12} + \beta_{13} + \beta_{14} - 2 \beta_{15} ) q^{23} + ( -2 - \beta_{1} - \beta_{2} + \beta_{3} - 2 \beta_{5} - \beta_{8} - \beta_{9} - \beta_{10} - 2 \beta_{11} + \beta_{15} ) q^{25} + ( -\beta_{1} - \beta_{3} + \beta_{5} - \beta_{6} - \beta_{7} + 2 \beta_{8} + \beta_{9} - \beta_{10} + \beta_{11} ) q^{27} + ( -1 + \beta_{1} - \beta_{2} - \beta_{4} - \beta_{6} - \beta_{7} - 2 \beta_{8} - \beta_{11} - \beta_{12} + 2 \beta_{13} ) q^{29} + ( \beta_{2} - \beta_{4} - 2 \beta_{5} - \beta_{7} - \beta_{10} + \beta_{11} + 2 \beta_{12} - \beta_{15} ) q^{31} + ( 2 + 2 \beta_{1} + 2 \beta_{2} + \beta_{6} - \beta_{7} + \beta_{8} - \beta_{9} + 2 \beta_{11} + 2 \beta_{12} + \beta_{14} - 2 \beta_{15} ) q^{33} + ( -2 - \beta_{2} + \beta_{3} + 2 \beta_{4} - \beta_{5} - \beta_{8} + \beta_{10} - 2 \beta_{11} - \beta_{12} + 2 \beta_{13} + 2 \beta_{15} ) q^{35} + ( -\beta_{6} - \beta_{10} + 2 \beta_{11} - \beta_{13} ) q^{37} + ( \beta_{1} + \beta_{3} + \beta_{4} - \beta_{5} - \beta_{6} - \beta_{7} + \beta_{8} + 2 \beta_{9} - 2 \beta_{10} - \beta_{12} + 2 \beta_{13} + \beta_{15} ) q^{39} + ( -\beta_{1} + 3 \beta_{2} - 3 \beta_{3} - \beta_{4} + 2 \beta_{5} - \beta_{6} - \beta_{7} + \beta_{8} + 3 \beta_{11} + \beta_{12} - \beta_{13} + \beta_{14} - 3 \beta_{15} ) q^{41} + ( 1 + \beta_{1} + \beta_{2} + \beta_{5} - 3 \beta_{7} - \beta_{8} - \beta_{9} + 2 \beta_{10} + \beta_{11} - 2 \beta_{15} ) q^{43} + ( -1 + \beta_{1} - 3 \beta_{2} + \beta_{3} + \beta_{4} + \beta_{7} - \beta_{12} - \beta_{14} ) q^{45} + ( -2 - 3 \beta_{2} + 3 \beta_{4} - \beta_{5} + \beta_{6} + 2 \beta_{7} + \beta_{9} - \beta_{10} - 2 \beta_{11} + \beta_{13} + 2 \beta_{15} ) q^{47} + ( 1 + 2 \beta_{1} - \beta_{2} + 2 \beta_{4} - 2 \beta_{5} + \beta_{7} + \beta_{9} - 2 \beta_{10} - 2 \beta_{11} - \beta_{12} + 2 \beta_{13} ) q^{49} + ( -3 - \beta_{1} + 3 \beta_{2} - 2 \beta_{3} - 2 \beta_{4} - \beta_{5} - 3 \beta_{7} - \beta_{9} - \beta_{10} + \beta_{11} + \beta_{12} + 2 \beta_{14} - 2 \beta_{15} ) q^{51} + ( 2 - \beta_{2} + 2 \beta_{3} + 2 \beta_{4} + 2 \beta_{6} + \beta_{7} + \beta_{8} - \beta_{10} - \beta_{13} - \beta_{14} + \beta_{15} ) q^{53} + ( -1 - 2 \beta_{1} + \beta_{2} - \beta_{4} - 2 \beta_{7} - \beta_{9} - \beta_{10} + 2 \beta_{12} - \beta_{13} - \beta_{15} ) q^{55} + ( 2 \beta_{1} - \beta_{2} + \beta_{4} - 2 \beta_{6} - 2 \beta_{7} - \beta_{8} + \beta_{9} - 2 \beta_{12} + \beta_{13} - \beta_{14} + 3 \beta_{15} ) q^{57} + ( -2 - \beta_{1} + 3 \beta_{2} - 3 \beta_{3} - 2 \beta_{4} + \beta_{5} - \beta_{7} + 2 \beta_{8} - 2 \beta_{9} + 3 \beta_{10} + 2 \beta_{11} + 2 \beta_{12} - 2 \beta_{13} + 2 \beta_{14} - 3 \beta_{15} ) q^{59} + ( -\beta_{1} - \beta_{2} + \beta_{3} - \beta_{5} + 2 \beta_{6} + \beta_{7} + \beta_{10} - 2 \beta_{11} + \beta_{15} ) q^{61} + ( 3 \beta_{1} - \beta_{2} + \beta_{3} + \beta_{4} - \beta_{5} - 3 \beta_{7} - \beta_{8} - \beta_{9} - \beta_{10} + \beta_{11} - \beta_{12} + \beta_{13} + \beta_{14} ) q^{63} + ( -1 - 3 \beta_{1} - \beta_{2} + \beta_{3} + \beta_{5} - \beta_{7} + \beta_{10} - \beta_{15} ) q^{65} + ( -\beta_{1} + \beta_{2} + \beta_{3} + 2 \beta_{5} - \beta_{6} + \beta_{9} + 3 \beta_{10} + \beta_{11} - \beta_{13} + 2 \beta_{15} ) q^{67} + ( -\beta_{1} + 5 \beta_{2} - 3 \beta_{3} - 4 \beta_{4} + \beta_{5} - \beta_{6} - \beta_{7} - \beta_{8} - 2 \beta_{9} - \beta_{10} + \beta_{11} + 3 \beta_{12} + 2 \beta_{14} - 5 \beta_{15} ) q^{69} + ( -1 - \beta_{1} + \beta_{2} - 2 \beta_{3} + \beta_{4} - 2 \beta_{5} - \beta_{6} + 2 \beta_{9} - \beta_{11} - 2 \beta_{12} + 2 \beta_{13} + \beta_{15} ) q^{71} + ( \beta_{2} + \beta_{4} + \beta_{5} + 2 \beta_{8} + 2 \beta_{9} + \beta_{10} + \beta_{11} + \beta_{12} + 2 \beta_{13} + \beta_{15} ) q^{73} + ( -4 - \beta_{1} - 2 \beta_{2} + \beta_{3} + \beta_{4} + \beta_{6} + 2 \beta_{7} + 2 \beta_{8} + \beta_{10} - 2 \beta_{11} - \beta_{13} - 2 \beta_{14} + 3 \beta_{15} ) q^{75} + ( 4 \beta_{1} + \beta_{2} - 2 \beta_{4} - 3 \beta_{5} - \beta_{6} - \beta_{7} - \beta_{8} - \beta_{9} + \beta_{12} + \beta_{13} ) q^{77} + ( 1 - \beta_{1} + \beta_{6} + 3 \beta_{7} + \beta_{10} - 2 \beta_{11} - 2 \beta_{13} ) q^{79} + ( -2 \beta_{1} - \beta_{2} - \beta_{3} - 3 \beta_{5} + \beta_{6} + \beta_{7} + \beta_{9} - 2 \beta_{10} + 2 \beta_{12} + \beta_{13} + \beta_{14} ) q^{81} + ( 1 - 3 \beta_{2} + 2 \beta_{5} + \beta_{6} + 2 \beta_{7} + 3 \beta_{8} + \beta_{9} + 2 \beta_{10} - 2 \beta_{13} - 3 \beta_{14} + 2 \beta_{15} ) q^{83} + ( 1 + \beta_{1} + 2 \beta_{2} - 2 \beta_{3} - 2 \beta_{4} + 3 \beta_{5} - 2 \beta_{7} - 2 \beta_{8} - 2 \beta_{9} + 2 \beta_{11} - \beta_{12} + 2 \beta_{14} - 4 \beta_{15} ) q^{85} + ( 5 - 3 \beta_{1} + 3 \beta_{2} - 3 \beta_{3} - \beta_{4} + 3 \beta_{5} + 2 \beta_{6} + 4 \beta_{8} + \beta_{10} + 2 \beta_{11} + \beta_{12} - 2 \beta_{13} + \beta_{14} - 4 \beta_{15} ) q^{87} + ( 2 + 3 \beta_{1} - 3 \beta_{2} + 3 \beta_{3} + 2 \beta_{4} - 2 \beta_{5} - \beta_{6} + 2 \beta_{7} + \beta_{8} + 2 \beta_{9} - \beta_{10} - 2 \beta_{11} - 2 \beta_{12} - 2 \beta_{14} + 5 \beta_{15} ) q^{89} + ( 2 \beta_{1} - 3 \beta_{2} + \beta_{3} + \beta_{4} - 4 \beta_{5} - 2 \beta_{7} - 2 \beta_{8} + \beta_{10} - \beta_{11} - 2 \beta_{12} + 3 \beta_{13} + \beta_{15} ) q^{91} + ( -1 - 5 \beta_{1} - 2 \beta_{2} + 3 \beta_{3} + 2 \beta_{4} + 4 \beta_{7} + 3 \beta_{9} - 3 \beta_{11} - \beta_{12} - 3 \beta_{14} + 5 \beta_{15} ) q^{93} + ( 1 - \beta_{1} + 3 \beta_{2} - \beta_{3} - 2 \beta_{4} + 5 \beta_{5} + 2 \beta_{6} - 2 \beta_{7} - 3 \beta_{8} - 4 \beta_{9} + 4 \beta_{10} + \beta_{11} + \beta_{12} - \beta_{13} + 3 \beta_{14} - 6 \beta_{15} ) q^{95} + ( -\beta_{1} + 5 \beta_{2} - 4 \beta_{3} - 3 \beta_{4} + 2 \beta_{5} - \beta_{6} - 3 \beta_{7} + 2 \beta_{8} + 6 \beta_{11} + \beta_{12} - \beta_{13} + 2 \beta_{14} - 4 \beta_{15} ) q^{97} + ( -2 + 2 \beta_{1} - 2 \beta_{2} + \beta_{3} + 2 \beta_{5} - 3 \beta_{6} + 2 \beta_{7} - 3 \beta_{8} + \beta_{10} - 3 \beta_{11} - 2 \beta_{12} - \beta_{14} + 2 \beta_{15} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - q^{7} + 6q^{9} + O(q^{10}) \) \( 16q - q^{7} + 6q^{9} - 6q^{11} - 3q^{13} - 3q^{15} + 9q^{17} + 6q^{21} + 21q^{23} - 8q^{25} + 9q^{27} + 6q^{29} - 15q^{35} + q^{37} - 3q^{39} - 6q^{41} - 2q^{43} - 30q^{45} - 36q^{47} - 5q^{49} - 33q^{51} + 15q^{57} - 30q^{59} - 15q^{63} + 14q^{67} + 21q^{69} - 57q^{75} + 3q^{77} + 2q^{79} + 18q^{81} + 6q^{85} + 48q^{87} + 21q^{89} + 9q^{91} + 21q^{93} - 3q^{97} - 9q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{16} - 2 x^{15} + 5 x^{14} - 17 x^{13} + 22 x^{12} - 31 x^{11} + 62 x^{10} - 52 x^{9} + 52 x^{8} - 156 x^{7} + 558 x^{6} - 837 x^{5} + 1782 x^{4} - 4131 x^{3} + 3645 x^{2} - 4374 x + 6561\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\(-1307 \nu^{15} + 5068 \nu^{14} + 824 \nu^{13} + 49267 \nu^{12} + 2716 \nu^{11} + 77018 \nu^{10} - 113602 \nu^{9} - 7210 \nu^{8} - 181946 \nu^{7} + 84090 \nu^{6} - 1174032 \nu^{5} + 900801 \nu^{4} - 2054484 \nu^{3} + 11094408 \nu^{2} + 4573017 \nu + 19166868\)\()/621108\)
\(\beta_{2}\)\(=\)\((\)\(3695 \nu^{15} - 20725 \nu^{14} + 51544 \nu^{13} - 99223 \nu^{12} + 215537 \nu^{11} - 360098 \nu^{10} + 187876 \nu^{9} - 298928 \nu^{8} + 711356 \nu^{7} - 844320 \nu^{6} + 2586978 \nu^{5} - 9488205 \nu^{4} + 18766647 \nu^{3} - 20620980 \nu^{2} + 33241671 \nu - 46300977\)\()/1242216\)
\(\beta_{3}\)\(=\)\((\)\(-6677 \nu^{15} + 21577 \nu^{14} - 16612 \nu^{13} + 91129 \nu^{12} - 145673 \nu^{11} + 11630 \nu^{10} - 101824 \nu^{9} + 277628 \nu^{8} - 214640 \nu^{7} + 202764 \nu^{6} - 3624714 \nu^{5} + 7713063 \nu^{4} - 3514995 \nu^{3} + 15997176 \nu^{2} - 16161201 \nu - 5872095\)\()/1242216\)
\(\beta_{4}\)\(=\)\((\)\(-818 \nu^{15} - 2453 \nu^{14} - 9016 \nu^{13} - 10490 \nu^{12} - 12167 \nu^{11} + 10856 \nu^{10} + 25058 \nu^{9} + 37994 \nu^{8} + 39934 \nu^{7} + 148242 \nu^{6} + 64386 \nu^{5} - 91530 \nu^{4} - 1898397 \nu^{3} - 3112344 \nu^{2} - 4586868 \nu - 2858409\)\()/103518\)
\(\beta_{5}\)\(=\)\((\)\(4659 \nu^{15} - 5459 \nu^{14} + 29980 \nu^{13} - 59671 \nu^{12} + 62083 \nu^{11} - 182738 \nu^{10} + 119048 \nu^{9} - 112444 \nu^{8} + 265832 \nu^{7} - 648764 \nu^{6} + 2006262 \nu^{5} - 2722977 \nu^{4} + 10424025 \nu^{3} - 11026368 \nu^{2} + 9412119 \nu - 25313067\)\()/414072\)
\(\beta_{6}\)\(=\)\((\)\(-7279 \nu^{15} + 11960 \nu^{14} - 9158 \nu^{13} + 168785 \nu^{12} + 36326 \nu^{11} + 302098 \nu^{10} - 390434 \nu^{9} - 30734 \nu^{8} - 575494 \nu^{7} + 625362 \nu^{6} - 4453344 \nu^{5} + 1286793 \nu^{4} - 9909540 \nu^{3} + 36051966 \nu^{2} + 18445887 \nu + 70277058\)\()/621108\)
\(\beta_{7}\)\(=\)\((\)\(-13862 \nu^{15} + 1333 \nu^{14} - 45760 \nu^{13} + 164782 \nu^{12} + 15775 \nu^{11} + 343040 \nu^{10} - 361210 \nu^{9} + 100070 \nu^{8} - 284726 \nu^{7} + 1370658 \nu^{6} - 5698206 \nu^{5} + 63018 \nu^{4} - 18020475 \nu^{3} + 29851092 \nu^{2} + 7676370 \nu + 61443765\)\()/621108\)
\(\beta_{8}\)\(=\)\((\)\(27959 \nu^{15} + 45263 \nu^{14} + 129088 \nu^{13} - 58111 \nu^{12} - 95755 \nu^{11} - 442826 \nu^{10} + 157996 \nu^{9} - 326936 \nu^{8} - 426532 \nu^{7} - 3257256 \nu^{6} + 5542434 \nu^{5} + 10347075 \nu^{4} + 36196875 \nu^{3} + 5383908 \nu^{2} + 7598367 \nu - 47062053\)\()/1242216\)
\(\beta_{9}\)\(=\)\((\)\(-7241 \nu^{15} + 4357 \nu^{14} - 32353 \nu^{13} + 38470 \nu^{12} - 78698 \nu^{11} + 72614 \nu^{10} - 29722 \nu^{9} + 229040 \nu^{8} - 92132 \nu^{7} + 637584 \nu^{6} - 2307114 \nu^{5} + 2838753 \nu^{4} - 8018433 \nu^{3} + 3449385 \nu^{2} - 14505642 \nu + 1180980\)\()/310554\)
\(\beta_{10}\)\(=\)\((\)\(5228 \nu^{15} + 1525 \nu^{14} + 20418 \nu^{13} - 46974 \nu^{12} - 5255 \nu^{11} - 122904 \nu^{10} + 100970 \nu^{9} - 49402 \nu^{8} + 85518 \nu^{7} - 572506 \nu^{6} + 1811682 \nu^{5} + 307476 \nu^{4} + 7123329 \nu^{3} - 7628742 \nu^{2} - 1004562 \nu - 19887849\)\()/207036\)
\(\beta_{11}\)\(=\)\((\)\(16952 \nu^{15} - 9175 \nu^{14} + 73804 \nu^{13} - 123904 \nu^{12} + 128807 \nu^{11} - 247964 \nu^{10} + 166462 \nu^{9} - 398066 \nu^{8} + 282422 \nu^{7} - 1677798 \nu^{6} + 5939262 \nu^{5} - 5124384 \nu^{4} + 20396205 \nu^{3} - 16524972 \nu^{2} + 21030192 \nu - 23648031\)\()/621108\)
\(\beta_{12}\)\(=\)\((\)\(11445 \nu^{15} - 10925 \nu^{14} + 48460 \nu^{13} - 170497 \nu^{12} + 54037 \nu^{11} - 403262 \nu^{10} + 367448 \nu^{9} - 147196 \nu^{8} + 581144 \nu^{7} - 1306628 \nu^{6} + 5344746 \nu^{5} - 3588687 \nu^{4} + 19817487 \nu^{3} - 33430320 \nu^{2} + 2317977 \nu - 69748533\)\()/414072\)
\(\beta_{13}\)\(=\)\((\)\(19793 \nu^{15} + 1430 \nu^{14} + 108688 \nu^{13} - 147133 \nu^{12} + 121322 \nu^{11} - 529214 \nu^{10} + 286834 \nu^{9} - 407870 \nu^{8} + 442766 \nu^{7} - 2453682 \nu^{6} + 6290388 \nu^{5} - 3336147 \nu^{4} + 34358094 \nu^{3} - 21512304 \nu^{2} + 26451765 \nu - 66410442\)\()/621108\)
\(\beta_{14}\)\(=\)\((\)\(59447 \nu^{15} + 8969 \nu^{14} + 284176 \nu^{13} - 415519 \nu^{12} + 220139 \nu^{11} - 1262618 \nu^{10} + 758536 \nu^{9} - 1010876 \nu^{8} + 904208 \nu^{7} - 6809388 \nu^{6} + 18944982 \nu^{5} - 4839237 \nu^{4} + 86642541 \nu^{3} - 56752164 \nu^{2} + 46993527 \nu - 158830875\)\()/1242216\)
\(\beta_{15}\)\(=\)\((\)\(24909 \nu^{15} - 6205 \nu^{14} + 135476 \nu^{13} - 180977 \nu^{12} + 218117 \nu^{11} - 566494 \nu^{10} + 299296 \nu^{9} - 605132 \nu^{8} + 530200 \nu^{7} - 2915308 \nu^{6} + 8256786 \nu^{5} - 7163775 \nu^{4} + 40104855 \nu^{3} - 24898752 \nu^{2} + 41926977 \nu - 60703101\)\()/414072\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(2 \beta_{15} - 2 \beta_{14} + \beta_{4} + 2 \beta_{3} - 2 \beta_{2}\)\()/3\)
\(\nu^{2}\)\(=\)\((\)\(-\beta_{14} - \beta_{13} - 2 \beta_{12} + 2 \beta_{10} - \beta_{9} - \beta_{7} - \beta_{6} + 3 \beta_{5} + \beta_{3} + \beta_{2} + 2 \beta_{1}\)\()/3\)
\(\nu^{3}\)\(=\)\((\)\(-2 \beta_{15} + 2 \beta_{14} + 2 \beta_{13} - \beta_{12} - 3 \beta_{10} - \beta_{9} - 2 \beta_{7} + 2 \beta_{6} + 2 \beta_{5} + \beta_{4} + \beta_{3} - 5 \beta_{1} + 4\)\()/3\)
\(\nu^{4}\)\(=\)\((\)\(6 \beta_{15} - \beta_{13} + 2 \beta_{12} - 12 \beta_{10} + 2 \beta_{9} + 3 \beta_{8} - 2 \beta_{7} - \beta_{6} - 7 \beta_{5} + 5 \beta_{4} + 6 \beta_{3} - 2 \beta_{2} + \beta_{1} + 7\)\()/3\)
\(\nu^{5}\)\(=\)\((\)\(-13 \beta_{15} + 5 \beta_{14} - 7 \beta_{13} + 9 \beta_{12} - 3 \beta_{11} + 10 \beta_{10} - 16 \beta_{9} - 9 \beta_{8} - 9 \beta_{7} + 8 \beta_{6} + 4 \beta_{5} - 10 \beta_{4} + 10 \beta_{3} + 8 \beta_{2} + 12 \beta_{1} - 4\)\()/3\)
\(\nu^{6}\)\(=\)\((\)\(\beta_{15} + 7 \beta_{14} + 24 \beta_{13} - 25 \beta_{12} - 12 \beta_{11} - 25 \beta_{10} - 3 \beta_{9} - 18 \beta_{8} - 23 \beta_{7} - 30 \beta_{6} + \beta_{5} - 6 \beta_{4} - \beta_{3} - 13 \beta_{2} + 31 \beta_{1} - 13\)\()/3\)
\(\nu^{7}\)\(=\)\((\)\(35 \beta_{15} + 4 \beta_{14} - 29 \beta_{13} - 8 \beta_{12} - 27 \beta_{11} + 3 \beta_{10} - 2 \beta_{9} - 3 \beta_{8} + 20 \beta_{7} + \beta_{6} + 4 \beta_{5} + 5 \beta_{4} + 17 \beta_{3} - 33 \beta_{2} - 82 \beta_{1} + 20\)\()/3\)
\(\nu^{8}\)\(=\)\((\)\(73 \beta_{15} - 51 \beta_{14} - 30 \beta_{13} + 4 \beta_{12} - 63 \beta_{11} + 52 \beta_{10} - 24 \beta_{9} - 6 \beta_{8} + 23 \beta_{7} + 21 \beta_{6} + 65 \beta_{5} + 61 \beta_{4} + 39 \beta_{3} - 94 \beta_{2} + 59 \beta_{1} - 26\)\()/3\)
\(\nu^{9}\)\(=\)\((\)\(-132 \beta_{15} + 4 \beta_{14} - 100 \beta_{13} + 15 \beta_{12} + 48 \beta_{11} + 61 \beta_{10} - 49 \beta_{9} + 90 \beta_{8} + 3 \beta_{7} - 37 \beta_{6} + 235 \beta_{5} - 110 \beta_{4} - 97 \beta_{3} + 85 \beta_{2} + 72 \beta_{1} - 16\)\()/3\)
\(\nu^{10}\)\(=\)\((\)\(79 \beta_{15} + 41 \beta_{14} - 17 \beta_{13} - 71 \beta_{12} + 15 \beta_{11} - 174 \beta_{10} + 82 \beta_{9} + 63 \beta_{8} + 17 \beta_{7} + 19 \beta_{6} + 49 \beta_{5} + 36 \beta_{4} + 10 \beta_{3} - 113 \beta_{2} - 472 \beta_{1} - 463\)\()/3\)
\(\nu^{11}\)\(=\)\((\)\(-5 \beta_{15} + 275 \beta_{14} - 241 \beta_{13} + 185 \beta_{12} - 225 \beta_{11} - 63 \beta_{10} - 28 \beta_{9} + 120 \beta_{8} + 118 \beta_{7} + 197 \beta_{6} - 142 \beta_{5} + 121 \beta_{4} - 152 \beta_{3} + 177 \beta_{2} - 113 \beta_{1} - 80\)\()/3\)
\(\nu^{12}\)\(=\)\((\)\(-995 \beta_{15} + 438 \beta_{14} - 26 \beta_{13} + 764 \beta_{12} + 51 \beta_{11} + 139 \beta_{10} - 452 \beta_{9} - 39 \beta_{8} + 4 \beta_{7} + 331 \beta_{6} + 174 \beta_{5} - 547 \beta_{4} - 387 \beta_{3} + 397 \beta_{2} + 727 \beta_{1} - 198\)\()/3\)
\(\nu^{13}\)\(=\)\((\)\(376 \beta_{15} - 4 \beta_{14} + 276 \beta_{13} - 699 \beta_{12} + 408 \beta_{11} - 924 \beta_{10} + 825 \beta_{9} - 129 \beta_{8} - 189 \beta_{7} - 1467 \beta_{6} - 393 \beta_{5} - 625 \beta_{4} - 476 \beta_{3} - 295 \beta_{2} + 558 \beta_{1} - 1935\)\()/3\)
\(\nu^{14}\)\(=\)\((\)\(453 \beta_{15} + 679 \beta_{14} - 1199 \beta_{13} - 40 \beta_{12} - 1635 \beta_{11} + 2518 \beta_{10} - 287 \beta_{9} - 732 \beta_{8} + 1228 \beta_{7} + 1309 \beta_{6} - 150 \beta_{5} - 336 \beta_{4} - 781 \beta_{3} - 253 \beta_{2} - 4148 \beta_{1} - 1881\)\()/3\)
\(\nu^{15}\)\(=\)\((\)\(1349 \beta_{15} - 1166 \beta_{14} + 1447 \beta_{13} + 472 \beta_{12} - 1887 \beta_{11} + 861 \beta_{10} + 454 \beta_{9} + 1194 \beta_{8} + 2750 \beta_{7} - 320 \beta_{6} + 949 \beta_{5} + 2555 \beta_{4} - 2791 \beta_{3} - 2679 \beta_{2} + 3770 \beta_{1} + 611\)\()/3\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1 + \beta_{1}\) \(1 + \beta_{1}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5.1
1.08696 + 1.34852i
−1.61108 + 0.635951i
1.68042 + 0.419752i
−0.268067 1.71118i
−0.213160 1.71888i
1.68124 0.416458i
−0.811340 + 1.53027i
−0.544978 + 1.64408i
1.08696 1.34852i
−1.61108 0.635951i
1.68042 0.419752i
−0.268067 + 1.71118i
−0.213160 + 1.71888i
1.68124 + 0.416458i
−0.811340 1.53027i
−0.544978 1.64408i
0 −1.63336 + 0.576322i 0 0.0382122 + 0.0661855i 0 0.232935 2.63548i 0 2.33571 1.88268i 0
5.2 0 −1.43204 0.974295i 0 1.09150 + 1.89054i 0 −1.25859 + 2.32722i 0 1.10150 + 2.79047i 0
5.3 0 −1.36511 + 1.06606i 0 −1.48494 2.57199i 0 −0.200279 + 2.63816i 0 0.727031 2.91057i 0
5.4 0 −0.134439 1.72683i 0 −0.842869 1.45989i 0 −2.27938 1.34329i 0 −2.96385 + 0.464306i 0
5.5 0 0.106783 + 1.72876i 0 1.43402 + 2.48379i 0 2.56899 0.632668i 0 −2.97719 + 0.369204i 0
5.6 0 1.06740 1.36406i 0 0.349828 + 0.605920i 0 2.48683 + 0.903137i 0 −0.721326 2.91199i 0
5.7 0 1.68085 + 0.418028i 0 1.37166 + 2.37578i 0 −2.60476 + 0.463945i 0 2.65051 + 1.40528i 0
5.8 0 1.70992 + 0.276016i 0 −1.95741 3.39033i 0 0.554241 2.58705i 0 2.84763 + 0.943929i 0
101.1 0 −1.63336 0.576322i 0 0.0382122 0.0661855i 0 0.232935 + 2.63548i 0 2.33571 + 1.88268i 0
101.2 0 −1.43204 + 0.974295i 0 1.09150 1.89054i 0 −1.25859 2.32722i 0 1.10150 2.79047i 0
101.3 0 −1.36511 1.06606i 0 −1.48494 + 2.57199i 0 −0.200279 2.63816i 0 0.727031 + 2.91057i 0
101.4 0 −0.134439 + 1.72683i 0 −0.842869 + 1.45989i 0 −2.27938 + 1.34329i 0 −2.96385 0.464306i 0
101.5 0 0.106783 1.72876i 0 1.43402 2.48379i 0 2.56899 + 0.632668i 0 −2.97719 0.369204i 0
101.6 0 1.06740 + 1.36406i 0 0.349828 0.605920i 0 2.48683 0.903137i 0 −0.721326 + 2.91199i 0
101.7 0 1.68085 0.418028i 0 1.37166 2.37578i 0 −2.60476 0.463945i 0 2.65051 1.40528i 0
101.8 0 1.70992 0.276016i 0 −1.95741 + 3.39033i 0 0.554241 + 2.58705i 0 2.84763 0.943929i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 101.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.i even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 252.2.w.a 16
3.b odd 2 1 756.2.w.a 16
4.b odd 2 1 1008.2.ca.d 16
7.b odd 2 1 1764.2.w.b 16
7.c even 3 1 1764.2.x.a 16
7.c even 3 1 1764.2.bm.a 16
7.d odd 6 1 252.2.bm.a yes 16
7.d odd 6 1 1764.2.x.b 16
9.c even 3 1 756.2.bm.a 16
9.c even 3 1 2268.2.t.b 16
9.d odd 6 1 252.2.bm.a yes 16
9.d odd 6 1 2268.2.t.a 16
12.b even 2 1 3024.2.ca.d 16
21.c even 2 1 5292.2.w.b 16
21.g even 6 1 756.2.bm.a 16
21.g even 6 1 5292.2.x.b 16
21.h odd 6 1 5292.2.x.a 16
21.h odd 6 1 5292.2.bm.a 16
28.f even 6 1 1008.2.df.d 16
36.f odd 6 1 3024.2.df.d 16
36.h even 6 1 1008.2.df.d 16
63.g even 3 1 5292.2.x.b 16
63.h even 3 1 5292.2.w.b 16
63.i even 6 1 inner 252.2.w.a 16
63.j odd 6 1 1764.2.w.b 16
63.k odd 6 1 2268.2.t.a 16
63.k odd 6 1 5292.2.x.a 16
63.l odd 6 1 5292.2.bm.a 16
63.n odd 6 1 1764.2.x.b 16
63.o even 6 1 1764.2.bm.a 16
63.s even 6 1 1764.2.x.a 16
63.s even 6 1 2268.2.t.b 16
63.t odd 6 1 756.2.w.a 16
84.j odd 6 1 3024.2.df.d 16
252.r odd 6 1 1008.2.ca.d 16
252.bj even 6 1 3024.2.ca.d 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.2.w.a 16 1.a even 1 1 trivial
252.2.w.a 16 63.i even 6 1 inner
252.2.bm.a yes 16 7.d odd 6 1
252.2.bm.a yes 16 9.d odd 6 1
756.2.w.a 16 3.b odd 2 1
756.2.w.a 16 63.t odd 6 1
756.2.bm.a 16 9.c even 3 1
756.2.bm.a 16 21.g even 6 1
1008.2.ca.d 16 4.b odd 2 1
1008.2.ca.d 16 252.r odd 6 1
1008.2.df.d 16 28.f even 6 1
1008.2.df.d 16 36.h even 6 1
1764.2.w.b 16 7.b odd 2 1
1764.2.w.b 16 63.j odd 6 1
1764.2.x.a 16 7.c even 3 1
1764.2.x.a 16 63.s even 6 1
1764.2.x.b 16 7.d odd 6 1
1764.2.x.b 16 63.n odd 6 1
1764.2.bm.a 16 7.c even 3 1
1764.2.bm.a 16 63.o even 6 1
2268.2.t.a 16 9.d odd 6 1
2268.2.t.a 16 63.k odd 6 1
2268.2.t.b 16 9.c even 3 1
2268.2.t.b 16 63.s even 6 1
3024.2.ca.d 16 12.b even 2 1
3024.2.ca.d 16 252.bj even 6 1
3024.2.df.d 16 36.f odd 6 1
3024.2.df.d 16 84.j odd 6 1
5292.2.w.b 16 21.c even 2 1
5292.2.w.b 16 63.h even 3 1
5292.2.x.a 16 21.h odd 6 1
5292.2.x.a 16 63.k odd 6 1
5292.2.x.b 16 21.g even 6 1
5292.2.x.b 16 63.g even 3 1
5292.2.bm.a 16 21.h odd 6 1
5292.2.bm.a 16 63.l odd 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(252, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( \)
$3$ \( 1 - 3 T^{2} - 3 T^{3} - 9 T^{5} + 36 T^{6} + 18 T^{7} - 72 T^{8} + 54 T^{9} + 324 T^{10} - 243 T^{11} - 729 T^{13} - 2187 T^{14} + 6561 T^{16} \)
$5$ \( 1 - 16 T^{2} - 24 T^{3} + 105 T^{4} + 357 T^{5} - 80 T^{6} - 2232 T^{7} - 2857 T^{8} + 6027 T^{9} + 16041 T^{10} + 777 T^{11} - 31496 T^{12} - 32724 T^{13} + 43664 T^{14} + 15327 T^{15} - 229716 T^{16} + 76635 T^{17} + 1091600 T^{18} - 4090500 T^{19} - 19685000 T^{20} + 2428125 T^{21} + 250640625 T^{22} + 470859375 T^{23} - 1116015625 T^{24} - 4359375000 T^{25} - 781250000 T^{26} + 17431640625 T^{27} + 25634765625 T^{28} - 29296875000 T^{29} - 97656250000 T^{30} + 152587890625 T^{32} \)
$7$ \( 1 + T + 3 T^{2} - 7 T^{3} - 82 T^{4} - 141 T^{5} - 20 T^{6} + 1111 T^{7} + 5328 T^{8} + 7777 T^{9} - 980 T^{10} - 48363 T^{11} - 196882 T^{12} - 117649 T^{13} + 352947 T^{14} + 823543 T^{15} + 5764801 T^{16} \)
$11$ \( 1 + 6 T + 61 T^{2} + 294 T^{3} + 1701 T^{4} + 6204 T^{5} + 24845 T^{6} + 59553 T^{7} + 143666 T^{8} - 78393 T^{9} - 1097631 T^{10} - 8096325 T^{11} - 21925205 T^{12} - 68059401 T^{13} - 34454504 T^{14} + 43343730 T^{15} + 1352446632 T^{16} + 476781030 T^{17} - 4168994984 T^{18} - 90587062731 T^{19} - 321006926405 T^{20} - 1303921237575 T^{21} - 1944520271991 T^{22} - 1527657796203 T^{23} + 30796082997746 T^{24} + 140422858842123 T^{25} + 644415314211845 T^{26} + 1770073604470644 T^{27} + 5338466668802421 T^{28} + 10149677370315714 T^{29} + 23164739848577701 T^{30} + 25063489016493906 T^{31} + 45949729863572161 T^{32} \)
$13$ \( 1 + 3 T + 53 T^{2} + 150 T^{3} + 1317 T^{4} + 4452 T^{5} + 23056 T^{6} + 90522 T^{7} + 327950 T^{8} + 1218621 T^{9} + 4082037 T^{10} + 12551466 T^{11} + 42977824 T^{12} + 136810599 T^{13} + 317458436 T^{14} + 1828010007 T^{15} + 2359677564 T^{16} + 23764130091 T^{17} + 53650475684 T^{18} + 300572886003 T^{19} + 1227489631264 T^{20} + 4660271465538 T^{21} + 19703212929933 T^{22} + 76466660535057 T^{23} + 267518889951950 T^{24} + 959940492242706 T^{25} + 3178465388070544 T^{26} + 7978698074252724 T^{27} + 30683578106307477 T^{28} + 45431265988837950 T^{29} + 208680948442062317 T^{30} + 153557679042272271 T^{31} + 665416609183179841 T^{32} \)
$17$ \( 1 - 9 T - 31 T^{2} + 498 T^{3} + 6 T^{4} - 11613 T^{5} + 1180 T^{6} + 197118 T^{7} + 356723 T^{8} - 3738756 T^{9} - 13114257 T^{10} + 60977685 T^{11} + 321880693 T^{12} - 548795961 T^{13} - 7936687522 T^{14} + 1772823582 T^{15} + 160937528238 T^{16} + 30138000894 T^{17} - 2293702693858 T^{18} - 2696234556393 T^{19} + 26883797360053 T^{20} + 86579592891045 T^{21} - 316546283221233 T^{22} - 1534156175710788 T^{23} + 2488413121625843 T^{24} + 23375805039335646 T^{25} + 2378872802529820 T^{26} - 397999531820542029 T^{27} + 3495733423378566 T^{28} + 4932479860387156626 T^{29} - 5219712623341428799 T^{30} - 25761807463588342137 T^{31} + 48661191875666868481 T^{32} \)
$19$ \( 1 + 59 T^{2} + 1482 T^{4} + 279 T^{5} + 21358 T^{6} - 23166 T^{7} + 284075 T^{8} - 1924515 T^{9} + 8259087 T^{10} - 60795468 T^{11} + 210571285 T^{12} - 1125692802 T^{13} + 3051652292 T^{14} - 14070928500 T^{15} + 40349090466 T^{16} - 267347641500 T^{17} + 1101646477412 T^{18} - 7721126928918 T^{19} + 27441860432485 T^{20} - 150535597519332 T^{21} + 388556024170647 T^{22} - 1720269569781585 T^{23} + 4824605670872075 T^{24} - 7475383206748314 T^{25} + 130947313134113758 T^{26} + 32500782232603101 T^{27} + 3280132710056050602 T^{28} + 47141394461190163139 T^{30} + \)\(28\!\cdots\!81\)\( T^{32} \)
$23$ \( 1 - 21 T + 283 T^{2} - 2856 T^{3} + 23904 T^{4} - 177009 T^{5} + 1214978 T^{6} - 7994925 T^{7} + 50784536 T^{8} - 310700127 T^{9} + 1817756595 T^{10} - 10184685783 T^{11} + 55106115085 T^{12} - 290568927984 T^{13} + 1499561670325 T^{14} - 7546165977213 T^{15} + 36821082385998 T^{16} - 173561817475899 T^{17} + 793268123601925 T^{18} - 3535352146781328 T^{19} + 15420950351501485 T^{20} - 65552131046611569 T^{21} + 269093213526437955 T^{22} - 1057879698795731769 T^{23} + 3976987051198414616 T^{24} - 14400080441947075275 T^{25} + 50332299741336834722 T^{26} - \)\(16\!\cdots\!43\)\( T^{27} + \)\(52\!\cdots\!84\)\( T^{28} - \)\(14\!\cdots\!48\)\( T^{29} + \)\(32\!\cdots\!47\)\( T^{30} - \)\(55\!\cdots\!47\)\( T^{31} + \)\(61\!\cdots\!61\)\( T^{32} \)
$29$ \( 1 - 6 T + 106 T^{2} - 564 T^{3} + 5445 T^{4} - 23700 T^{5} + 153455 T^{6} - 499140 T^{7} + 2268674 T^{8} - 3839766 T^{9} + 25367247 T^{10} - 108756381 T^{11} + 2283543946 T^{12} - 15452150286 T^{13} + 152754700246 T^{14} - 806878620189 T^{15} + 5726182499856 T^{16} - 23399479985481 T^{17} + 128466702906886 T^{18} - 376862493325254 T^{19} + 1615107245670826 T^{20} - 2230718335391769 T^{21} + 15089030105167287 T^{22} - 66235488555503694 T^{23} + 1134896030677883714 T^{24} - 7241096842395252660 T^{25} + 64559628486082344455 T^{26} - \)\(28\!\cdots\!00\)\( T^{27} + \)\(19\!\cdots\!45\)\( T^{28} - \)\(57\!\cdots\!96\)\( T^{29} + \)\(31\!\cdots\!86\)\( T^{30} - \)\(51\!\cdots\!94\)\( T^{31} + \)\(25\!\cdots\!21\)\( T^{32} \)
$31$ \( 1 - 220 T^{2} + 25434 T^{4} - 2035931 T^{6} + 125854031 T^{8} - 6377263569 T^{10} + 274749236767 T^{12} - 10292358079372 T^{14} + 339402697885782 T^{16} - 9890956114276492 T^{18} + 253736689888296607 T^{20} - 5659844892194697489 T^{22} + \)\(10\!\cdots\!71\)\( T^{24} - \)\(16\!\cdots\!31\)\( T^{26} + \)\(20\!\cdots\!74\)\( T^{28} - \)\(16\!\cdots\!20\)\( T^{30} + \)\(72\!\cdots\!81\)\( T^{32} \)
$37$ \( 1 - T - 188 T^{2} + 55 T^{3} + 18431 T^{4} + 6958 T^{5} - 1220598 T^{6} - 1466820 T^{7} + 61023285 T^{8} + 128763363 T^{9} - 2426865150 T^{10} - 7087005807 T^{11} + 80710069782 T^{12} + 247085609469 T^{13} - 2444398029834 T^{14} - 3801878390997 T^{15} + 81128049964254 T^{16} - 140669500466889 T^{17} - 3346380902842746 T^{18} + 12515627376433257 T^{19} + 151263665092702902 T^{20} - 491441025939358299 T^{21} - 6226672006436746350 T^{22} + 12223747755547878279 T^{23} + \)\(21\!\cdots\!85\)\( T^{24} - \)\(19\!\cdots\!40\)\( T^{25} - \)\(58\!\cdots\!02\)\( T^{26} + \)\(12\!\cdots\!54\)\( T^{27} + \)\(12\!\cdots\!11\)\( T^{28} + \)\(13\!\cdots\!35\)\( T^{29} - \)\(16\!\cdots\!32\)\( T^{30} - \)\(33\!\cdots\!93\)\( T^{31} + \)\(12\!\cdots\!41\)\( T^{32} \)
$41$ \( 1 + 6 T - 142 T^{2} - 1146 T^{3} + 7575 T^{4} + 89148 T^{5} - 186515 T^{6} - 3858942 T^{7} + 5165546 T^{8} + 137269398 T^{9} - 383379603 T^{10} - 6275799867 T^{11} + 14048576428 T^{12} + 262470296220 T^{13} + 63020850350 T^{14} - 4818424458177 T^{15} - 18114488698896 T^{16} - 197555402785257 T^{17} + 105938049438350 T^{18} + 18089715285778620 T^{19} + 39697919375761708 T^{20} - 727090330826925267 T^{21} - 1821093078123196323 T^{22} + 26733801933571993638 T^{23} + 41246498577585065066 T^{24} - \)\(12\!\cdots\!62\)\( T^{25} - \)\(25\!\cdots\!15\)\( T^{26} + \)\(49\!\cdots\!68\)\( T^{27} + \)\(17\!\cdots\!75\)\( T^{28} - \)\(10\!\cdots\!66\)\( T^{29} - \)\(53\!\cdots\!62\)\( T^{30} + \)\(93\!\cdots\!06\)\( T^{31} + \)\(63\!\cdots\!41\)\( T^{32} \)
$43$ \( 1 + 2 T - 137 T^{2} - 620 T^{3} + 8660 T^{4} + 62377 T^{5} - 131688 T^{6} - 3324402 T^{7} - 16902063 T^{8} + 47132751 T^{9} + 1398120027 T^{10} + 5063156292 T^{11} - 36164979717 T^{12} - 388120390392 T^{13} - 815732360646 T^{14} + 8046953157708 T^{15} + 93229603031718 T^{16} + 346018985781444 T^{17} - 1508289134834454 T^{18} - 30858287878896744 T^{19} - 123640868821459317 T^{20} + 744326723152573356 T^{21} + 8838024276744682323 T^{22} + 12811558914472065357 T^{23} - \)\(19\!\cdots\!63\)\( T^{24} - \)\(16\!\cdots\!86\)\( T^{25} - \)\(28\!\cdots\!12\)\( T^{26} + \)\(57\!\cdots\!39\)\( T^{27} + \)\(34\!\cdots\!60\)\( T^{28} - \)\(10\!\cdots\!60\)\( T^{29} - \)\(10\!\cdots\!13\)\( T^{30} + \)\(63\!\cdots\!14\)\( T^{31} + \)\(13\!\cdots\!01\)\( T^{32} \)
$47$ \( ( 1 + 18 T + 262 T^{2} + 2454 T^{3} + 20893 T^{4} + 154293 T^{5} + 1267261 T^{6} + 9657933 T^{7} + 72865294 T^{8} + 453922851 T^{9} + 2799379549 T^{10} + 16019162139 T^{11} + 101951175133 T^{12} + 562812647178 T^{13} + 2824154416198 T^{14} + 9119216168334 T^{15} + 23811286661761 T^{16} )^{2} \)
$53$ \( 1 + 271 T^{2} + 39798 T^{4} + 8019 T^{5} + 3882470 T^{6} + 3112830 T^{7} + 272618249 T^{8} + 573793713 T^{9} + 13751201223 T^{10} + 69938411256 T^{11} + 461723008303 T^{12} + 6218775316710 T^{13} + 7202514917530 T^{14} + 423085276358208 T^{15} - 24546838659498 T^{16} + 22423519646985024 T^{17} + 20231864403341770 T^{18} + 925832612825834670 T^{19} + 3643216624277663743 T^{20} + 29247928374839669208 T^{21} + \)\(30\!\cdots\!67\)\( T^{22} + \)\(67\!\cdots\!81\)\( T^{23} + \)\(16\!\cdots\!89\)\( T^{24} + \)\(10\!\cdots\!90\)\( T^{25} + \)\(67\!\cdots\!30\)\( T^{26} + \)\(74\!\cdots\!43\)\( T^{27} + \)\(19\!\cdots\!18\)\( T^{28} + \)\(37\!\cdots\!99\)\( T^{30} + \)\(38\!\cdots\!21\)\( T^{32} \)
$59$ \( ( 1 + 15 T + 304 T^{2} + 2994 T^{3} + 35017 T^{4} + 245181 T^{5} + 2158909 T^{6} + 12195126 T^{7} + 111191710 T^{8} + 719512434 T^{9} + 7515162229 T^{10} + 50355028599 T^{11} + 424313630137 T^{12} + 2140483351206 T^{13} + 12822882226864 T^{14} + 37329772272285 T^{15} + 146830437604321 T^{16} )^{2} \)
$61$ \( 1 - 745 T^{2} + 270666 T^{4} - 63553928 T^{6} + 10780728317 T^{8} - 1399459132305 T^{10} + 143698232661445 T^{12} - 11899376361024010 T^{14} + 802850906302349022 T^{16} - 44277579439370341210 T^{18} + \)\(19\!\cdots\!45\)\( T^{20} - \)\(72\!\cdots\!05\)\( T^{22} + \)\(20\!\cdots\!77\)\( T^{24} - \)\(45\!\cdots\!28\)\( T^{26} + \)\(71\!\cdots\!86\)\( T^{28} - \)\(73\!\cdots\!45\)\( T^{30} + \)\(36\!\cdots\!61\)\( T^{32} \)
$67$ \( ( 1 - 7 T + 315 T^{2} - 1580 T^{3} + 47600 T^{4} - 182439 T^{5} + 4735936 T^{6} - 14472934 T^{7} + 354986784 T^{8} - 969686578 T^{9} + 21259616704 T^{10} - 54870900957 T^{11} + 959193359600 T^{12} - 2133197669060 T^{13} + 28494390383235 T^{14} - 42424981237261 T^{15} + 406067677556641 T^{16} )^{2} \)
$71$ \( 1 - 389 T^{2} + 95718 T^{4} - 16982206 T^{6} + 2417461733 T^{8} - 285171142929 T^{10} + 28739565041956 T^{12} - 2501948752776044 T^{14} + 190114711967546784 T^{16} - 12612323662744037804 T^{18} + \)\(73\!\cdots\!36\)\( T^{20} - \)\(36\!\cdots\!09\)\( T^{22} + \)\(15\!\cdots\!13\)\( T^{24} - \)\(55\!\cdots\!06\)\( T^{26} + \)\(15\!\cdots\!38\)\( T^{28} - \)\(32\!\cdots\!09\)\( T^{30} + \)\(41\!\cdots\!21\)\( T^{32} \)
$73$ \( 1 + 278 T^{2} + 39699 T^{4} - 160362 T^{5} + 4049527 T^{6} - 43185312 T^{7} + 316493258 T^{8} - 5978310966 T^{9} + 30516141699 T^{10} - 573490190745 T^{11} + 3892519182646 T^{12} - 40210747978752 T^{13} + 436575836052170 T^{14} - 2488085380264887 T^{15} + 37348173312201540 T^{16} - 181630232759336751 T^{17} + 2326512630322013930 T^{18} - 15642664546450166784 T^{19} + \)\(11\!\cdots\!86\)\( T^{20} - \)\(11\!\cdots\!85\)\( T^{21} + \)\(46\!\cdots\!11\)\( T^{22} - \)\(66\!\cdots\!02\)\( T^{23} + \)\(25\!\cdots\!98\)\( T^{24} - \)\(25\!\cdots\!56\)\( T^{25} + \)\(17\!\cdots\!23\)\( T^{26} - \)\(50\!\cdots\!74\)\( T^{27} + \)\(90\!\cdots\!79\)\( T^{28} + \)\(33\!\cdots\!02\)\( T^{30} + \)\(65\!\cdots\!61\)\( T^{32} \)
$79$ \( ( 1 - T + 489 T^{2} - 92 T^{3} + 108962 T^{4} + 44511 T^{5} + 14856838 T^{6} + 9973310 T^{7} + 1391605452 T^{8} + 787891490 T^{9} + 92721525958 T^{10} + 21945658929 T^{11} + 4244078725922 T^{12} - 283089188708 T^{13} + 118869765749769 T^{14} - 19203908986159 T^{15} + 1517108809906561 T^{16} )^{2} \)
$83$ \( 1 - 334 T^{2} - 1272 T^{3} + 54816 T^{4} + 395796 T^{5} - 5397056 T^{6} - 60133572 T^{7} + 310945691 T^{8} + 6455120304 T^{9} - 3389068248 T^{10} - 563598757704 T^{11} - 2368219763012 T^{12} + 39202056035964 T^{13} + 437295746267318 T^{14} - 1352773893773628 T^{15} - 45259898774669136 T^{16} - 112280233183211124 T^{17} + 3012530396035553702 T^{18} + 22415226014635747668 T^{19} - \)\(11\!\cdots\!52\)\( T^{20} - \)\(22\!\cdots\!72\)\( T^{21} - \)\(11\!\cdots\!12\)\( T^{22} + \)\(17\!\cdots\!08\)\( T^{23} + \)\(70\!\cdots\!31\)\( T^{24} - \)\(11\!\cdots\!16\)\( T^{25} - \)\(83\!\cdots\!44\)\( T^{26} + \)\(50\!\cdots\!32\)\( T^{27} + \)\(58\!\cdots\!76\)\( T^{28} - \)\(11\!\cdots\!36\)\( T^{29} - \)\(24\!\cdots\!86\)\( T^{30} + \)\(50\!\cdots\!81\)\( T^{32} \)
$89$ \( 1 - 21 T - 253 T^{2} + 6084 T^{3} + 64134 T^{4} - 1086543 T^{5} - 14444834 T^{6} + 154075794 T^{7} + 2457441293 T^{8} - 16916386392 T^{9} - 343956627405 T^{10} + 1437006555873 T^{11} + 41653185355711 T^{12} - 92739461592729 T^{13} - 4399434577615834 T^{14} + 3097874885577318 T^{15} + 411982470004053510 T^{16} + 275710864816381302 T^{17} - 34847921289295021114 T^{18} - 65378445499564570401 T^{19} + \)\(26\!\cdots\!51\)\( T^{20} + \)\(80\!\cdots\!77\)\( T^{21} - \)\(17\!\cdots\!05\)\( T^{22} - \)\(74\!\cdots\!68\)\( T^{23} + \)\(96\!\cdots\!33\)\( T^{24} + \)\(53\!\cdots\!46\)\( T^{25} - \)\(45\!\cdots\!34\)\( T^{26} - \)\(30\!\cdots\!27\)\( T^{27} + \)\(15\!\cdots\!14\)\( T^{28} + \)\(13\!\cdots\!96\)\( T^{29} - \)\(49\!\cdots\!73\)\( T^{30} - \)\(36\!\cdots\!29\)\( T^{31} + \)\(15\!\cdots\!61\)\( T^{32} \)
$97$ \( 1 + 3 T + 392 T^{2} + 1167 T^{3} + 75243 T^{4} + 248802 T^{5} + 9281977 T^{6} + 31870980 T^{7} + 787182476 T^{8} + 2086019346 T^{9} + 40966656945 T^{10} - 99548858823 T^{11} - 1131878124686 T^{12} - 48785193558327 T^{13} - 618766130152816 T^{14} - 7413615555033420 T^{15} - 81803373889459032 T^{16} - 719120708838241740 T^{17} - 5821970518607845744 T^{18} - 44524928960458978071 T^{19} - \)\(10\!\cdots\!66\)\( T^{20} - \)\(85\!\cdots\!11\)\( T^{21} + \)\(34\!\cdots\!05\)\( T^{22} + \)\(16\!\cdots\!98\)\( T^{23} + \)\(61\!\cdots\!36\)\( T^{24} + \)\(24\!\cdots\!60\)\( T^{25} + \)\(68\!\cdots\!73\)\( T^{26} + \)\(17\!\cdots\!06\)\( T^{27} + \)\(52\!\cdots\!63\)\( T^{28} + \)\(78\!\cdots\!59\)\( T^{29} + \)\(25\!\cdots\!48\)\( T^{30} + \)\(18\!\cdots\!79\)\( T^{31} + \)\(61\!\cdots\!21\)\( T^{32} \)
show more
show less