Properties

Label 252.2.t.a
Level $252$
Weight $2$
Character orbit 252.t
Analytic conductor $2.012$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [252,2,Mod(17,252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(252, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("252.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 252.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.01223013094\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{5} + ( - 3 \beta_1 + 2) q^{7} + ( - \beta_{3} - \beta_{2}) q^{11} + (2 \beta_1 - 1) q^{13} + (2 \beta_{3} - 2 \beta_{2}) q^{17} + ( - 3 \beta_1 + 6) q^{19} + (\beta_1 - 1) q^{25} + ( - 2 \beta_{3} + 4 \beta_{2}) q^{29}+ \cdots + (4 \beta_1 - 2) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{7} + 18 q^{19} - 2 q^{25} - 6 q^{31} + 10 q^{37} - 44 q^{43} - 26 q^{49} - 12 q^{61} + 14 q^{67} + 54 q^{73} - 22 q^{79} - 48 q^{85} + 18 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 2\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 4\nu ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -2\beta_{3} + 4\beta_{2} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(-1\) \(\beta_{1}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
17.1
1.22474 + 0.707107i
−1.22474 0.707107i
1.22474 0.707107i
−1.22474 + 0.707107i
0 0 0 −1.22474 2.12132i 0 0.500000 2.59808i 0 0 0
17.2 0 0 0 1.22474 + 2.12132i 0 0.500000 2.59808i 0 0 0
89.1 0 0 0 −1.22474 + 2.12132i 0 0.500000 + 2.59808i 0 0 0
89.2 0 0 0 1.22474 2.12132i 0 0.500000 + 2.59808i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.d odd 6 1 inner
21.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 252.2.t.a 4
3.b odd 2 1 inner 252.2.t.a 4
4.b odd 2 1 1008.2.bt.a 4
5.b even 2 1 6300.2.ch.a 4
5.c odd 4 2 6300.2.dd.a 8
7.b odd 2 1 1764.2.t.a 4
7.c even 3 1 1764.2.f.a 4
7.c even 3 1 1764.2.t.a 4
7.d odd 6 1 inner 252.2.t.a 4
7.d odd 6 1 1764.2.f.a 4
9.c even 3 1 2268.2.w.h 4
9.c even 3 1 2268.2.bm.g 4
9.d odd 6 1 2268.2.w.h 4
9.d odd 6 1 2268.2.bm.g 4
12.b even 2 1 1008.2.bt.a 4
15.d odd 2 1 6300.2.ch.a 4
15.e even 4 2 6300.2.dd.a 8
21.c even 2 1 1764.2.t.a 4
21.g even 6 1 inner 252.2.t.a 4
21.g even 6 1 1764.2.f.a 4
21.h odd 6 1 1764.2.f.a 4
21.h odd 6 1 1764.2.t.a 4
28.f even 6 1 1008.2.bt.a 4
28.f even 6 1 7056.2.k.a 4
28.g odd 6 1 7056.2.k.a 4
35.i odd 6 1 6300.2.ch.a 4
35.k even 12 2 6300.2.dd.a 8
63.i even 6 1 2268.2.bm.g 4
63.k odd 6 1 2268.2.w.h 4
63.s even 6 1 2268.2.w.h 4
63.t odd 6 1 2268.2.bm.g 4
84.j odd 6 1 1008.2.bt.a 4
84.j odd 6 1 7056.2.k.a 4
84.n even 6 1 7056.2.k.a 4
105.p even 6 1 6300.2.ch.a 4
105.w odd 12 2 6300.2.dd.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.2.t.a 4 1.a even 1 1 trivial
252.2.t.a 4 3.b odd 2 1 inner
252.2.t.a 4 7.d odd 6 1 inner
252.2.t.a 4 21.g even 6 1 inner
1008.2.bt.a 4 4.b odd 2 1
1008.2.bt.a 4 12.b even 2 1
1008.2.bt.a 4 28.f even 6 1
1008.2.bt.a 4 84.j odd 6 1
1764.2.f.a 4 7.c even 3 1
1764.2.f.a 4 7.d odd 6 1
1764.2.f.a 4 21.g even 6 1
1764.2.f.a 4 21.h odd 6 1
1764.2.t.a 4 7.b odd 2 1
1764.2.t.a 4 7.c even 3 1
1764.2.t.a 4 21.c even 2 1
1764.2.t.a 4 21.h odd 6 1
2268.2.w.h 4 9.c even 3 1
2268.2.w.h 4 9.d odd 6 1
2268.2.w.h 4 63.k odd 6 1
2268.2.w.h 4 63.s even 6 1
2268.2.bm.g 4 9.c even 3 1
2268.2.bm.g 4 9.d odd 6 1
2268.2.bm.g 4 63.i even 6 1
2268.2.bm.g 4 63.t odd 6 1
6300.2.ch.a 4 5.b even 2 1
6300.2.ch.a 4 15.d odd 2 1
6300.2.ch.a 4 35.i odd 6 1
6300.2.ch.a 4 105.p even 6 1
6300.2.dd.a 8 5.c odd 4 2
6300.2.dd.a 8 15.e even 4 2
6300.2.dd.a 8 35.k even 12 2
6300.2.dd.a 8 105.w odd 12 2
7056.2.k.a 4 28.f even 6 1
7056.2.k.a 4 28.g odd 6 1
7056.2.k.a 4 84.j odd 6 1
7056.2.k.a 4 84.n even 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(252, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 6T^{2} + 36 \) Copy content Toggle raw display
$7$ \( (T^{2} - T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 18T^{2} + 324 \) Copy content Toggle raw display
$13$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 24T^{2} + 576 \) Copy content Toggle raw display
$19$ \( (T^{2} - 9 T + 27)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 72)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 3 T + 3)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 5 T + 25)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 150)^{2} \) Copy content Toggle raw display
$43$ \( (T + 11)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 6T^{2} + 36 \) Copy content Toggle raw display
$53$ \( T^{4} - 72T^{2} + 5184 \) Copy content Toggle raw display
$59$ \( T^{4} + 24T^{2} + 576 \) Copy content Toggle raw display
$61$ \( (T^{2} + 6 T + 12)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 7 T + 49)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 162)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 27 T + 243)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 11 T + 121)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 150)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 216 T^{2} + 46656 \) Copy content Toggle raw display
$97$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
show more
show less