Properties

Label 252.2.n
Level 252
Weight 2
Character orbit n
Rep. character \(\chi_{252}(31,\cdot)\)
Character field \(\Q(\zeta_{6})\)
Dimension 88
Newform subspaces 2
Sturm bound 96
Trace bound 1

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 252.n (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 252 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(96\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(252, [\chi])\).

Total New Old
Modular forms 104 104 0
Cusp forms 88 88 0
Eisenstein series 16 16 0

Trace form

\( 88q + q^{2} + q^{4} - 6q^{6} - 8q^{8} - 2q^{9} + O(q^{10}) \) \( 88q + q^{2} + q^{4} - 6q^{6} - 8q^{8} - 2q^{9} - 6q^{10} - 3q^{12} - 15q^{14} + q^{16} - 12q^{17} - 7q^{18} + 24q^{20} - 8q^{21} + 2q^{22} + 6q^{24} - 60q^{25} - 12q^{26} + 26q^{30} + q^{32} - 6q^{33} + 6q^{34} - 38q^{36} - 4q^{37} + 13q^{42} - 5q^{44} - 18q^{45} + 2q^{46} - 9q^{48} - 2q^{49} - 31q^{50} - 4q^{53} - 60q^{54} - 48q^{56} + 12q^{57} + 6q^{58} - 16q^{60} - 6q^{61} - 8q^{64} + 14q^{65} + 15q^{66} + 18q^{69} + 8q^{70} + 17q^{72} - 12q^{73} + 34q^{74} - 12q^{76} + 62q^{77} - 3q^{78} + 51q^{80} + 10q^{81} - 12q^{82} + 29q^{84} - 14q^{85} - 26q^{86} + 14q^{88} - 72q^{89} + 75q^{90} + 44q^{92} - 6q^{93} - 3q^{94} - 54q^{96} - 5q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(252, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
252.2.n.a \(4\) \(2.012\) \(\Q(\zeta_{12})\) None \(2\) \(0\) \(0\) \(0\) \(q+(\zeta_{12}+\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}+(-2\zeta_{12}+\cdots)q^{3}+\cdots\)
252.2.n.b \(84\) \(2.012\) None \(-1\) \(0\) \(0\) \(0\)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ (\( 1 - 2 T + 2 T^{2} - 4 T^{3} + 4 T^{4} \))
$3$ (\( ( 1 - 3 T^{2} )^{2} \))
$5$ (\( ( 1 + 2 T^{2} + 25 T^{4} )^{2} \))
$7$ (\( 1 + 2 T^{2} + 49 T^{4} \))
$11$ (\( ( 1 - 18 T^{2} + 121 T^{4} )^{2} \))
$13$ (\( ( 1 - 7 T + 13 T^{2} )^{2}( 1 - 2 T + 13 T^{2} )^{2} \))
$17$ (\( ( 1 + 9 T + 44 T^{2} + 153 T^{3} + 289 T^{4} )^{2} \))
$19$ (\( 1 - 35 T^{2} + 864 T^{4} - 12635 T^{6} + 130321 T^{8} \))
$23$ (\( ( 1 - 30 T^{2} + 529 T^{4} )^{2} \))
$29$ (\( ( 1 + 5 T - 4 T^{2} + 145 T^{3} + 841 T^{4} )^{2} \))
$31$ (\( 1 - 35 T^{2} + 264 T^{4} - 33635 T^{6} + 923521 T^{8} \))
$37$ (\( ( 1 + 3 T - 28 T^{2} + 111 T^{3} + 1369 T^{4} )^{2} \))
$41$ (\( ( 1 - 3 T + 44 T^{2} - 123 T^{3} + 1681 T^{4} )^{2} \))
$43$ (\( 1 - 35 T^{2} - 624 T^{4} - 64715 T^{6} + 3418801 T^{8} \))
$47$ (\( 1 - 91 T^{2} + 6072 T^{4} - 201019 T^{6} + 4879681 T^{8} \))
$53$ (\( ( 1 + T - 52 T^{2} + 53 T^{3} + 2809 T^{4} )^{2} \))
$59$ (\( 1 - 115 T^{2} + 9744 T^{4} - 400315 T^{6} + 12117361 T^{8} \))
$61$ (\( ( 1 - 9 T + 88 T^{2} - 549 T^{3} + 3721 T^{4} )^{2} \))
$67$ (\( 1 + 53 T^{2} - 1680 T^{4} + 237917 T^{6} + 20151121 T^{8} \))
$71$ (\( ( 1 - 138 T^{2} + 5041 T^{4} )^{2} \))
$73$ (\( ( 1 + 21 T + 220 T^{2} + 1533 T^{3} + 5329 T^{4} )^{2} \))
$79$ (\( 1 + 149 T^{2} + 15960 T^{4} + 929909 T^{6} + 38950081 T^{8} \))
$83$ (\( 1 - 139 T^{2} + 12432 T^{4} - 957571 T^{6} + 47458321 T^{8} \))
$89$ (\( ( 1 - 15 T + 164 T^{2} - 1335 T^{3} + 7921 T^{4} )^{2} \))
$97$ (\( ( 1 - 3 T + 100 T^{2} - 291 T^{3} + 9409 T^{4} )^{2} \))
show more
show less