Defining parameters
Level: | \( N \) | \(=\) | \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 252.k (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(252, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 120 | 6 | 114 |
Cusp forms | 72 | 6 | 66 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(252, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
252.2.k.a | $2$ | $2.012$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(-2\) | \(1\) | \(q+(-2+2\zeta_{6})q^{5}+(-1+3\zeta_{6})q^{7}+\cdots\) |
252.2.k.b | $2$ | $2.012$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(5\) | \(q+(3-\zeta_{6})q^{7}+5q^{13}+(1-\zeta_{6})q^{19}+\cdots\) |
252.2.k.c | $2$ | $2.012$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(3\) | \(-4\) | \(q+(3-3\zeta_{6})q^{5}+(-1-2\zeta_{6})q^{7}-3\zeta_{6}q^{11}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(252, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(252, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)