Properties

Label 252.2.bf.d
Level $252$
Weight $2$
Character orbit 252.bf
Analytic conductor $2.012$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 252.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.01223013094\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
Defining polynomial: \(x^{4} - x^{3} - x^{2} - 2 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{2} + ( 1 + \beta_{1} - \beta_{2} ) q^{4} + ( -2 + \beta_{2} ) q^{5} + ( -1 + 2 \beta_{1} + \beta_{2} ) q^{7} + ( 3 - \beta_{1} - \beta_{2} + \beta_{3} ) q^{8} +O(q^{10})\) \( q + \beta_{3} q^{2} + ( 1 + \beta_{1} - \beta_{2} ) q^{4} + ( -2 + \beta_{2} ) q^{5} + ( -1 + 2 \beta_{1} + \beta_{2} ) q^{7} + ( 3 - \beta_{1} - \beta_{2} + \beta_{3} ) q^{8} + ( -1 + \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{10} + ( -1 + 2 \beta_{1} + \beta_{2} ) q^{11} + ( 2 - 4 \beta_{2} ) q^{13} + ( 3 + \beta_{1} + \beta_{2} - \beta_{3} ) q^{14} + ( -2 \beta_{2} + 3 \beta_{3} ) q^{16} + ( -4 - 4 \beta_{2} ) q^{17} + ( -1 - \beta_{1} + 3 \beta_{2} - \beta_{3} ) q^{20} + ( 3 + \beta_{1} + \beta_{2} - \beta_{3} ) q^{22} + ( 2 \beta_{2} - 4 \beta_{3} ) q^{23} + ( -2 + 2 \beta_{2} ) q^{25} + ( 4 - 4 \beta_{1} - 4 \beta_{2} + 2 \beta_{3} ) q^{26} + ( 2 \beta_{2} + 3 \beta_{3} ) q^{28} -5 q^{29} + ( -1 + 2 \beta_{1} + 3 \beta_{2} - 4 \beta_{3} ) q^{31} + ( 5 + \beta_{1} - 5 \beta_{2} ) q^{32} + ( 4 - 4 \beta_{1} - 4 \beta_{2} - 4 \beta_{3} ) q^{34} + ( 1 - 2 \beta_{1} - 2 \beta_{3} ) q^{35} + ( -6 + 2 \beta_{1} + 4 \beta_{2} - \beta_{3} ) q^{40} + ( -2 + 4 \beta_{2} ) q^{41} + ( 4 - 8 \beta_{1} - 8 \beta_{2} + 8 \beta_{3} ) q^{43} + ( 2 \beta_{2} + 3 \beta_{3} ) q^{44} + ( -6 - 2 \beta_{1} + 6 \beta_{2} ) q^{46} + ( -4 + 8 \beta_{1} + 6 \beta_{2} - 4 \beta_{3} ) q^{47} + 7 \beta_{2} q^{49} + ( -2 + 2 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{50} + ( -2 - 2 \beta_{1} - 6 \beta_{2} + 4 \beta_{3} ) q^{52} + ( 7 - 7 \beta_{2} ) q^{53} + ( 1 - 2 \beta_{1} - 2 \beta_{3} ) q^{55} + ( 1 + 5 \beta_{1} - \beta_{2} ) q^{56} -5 \beta_{3} q^{58} + ( 3 - 6 \beta_{1} - 9 \beta_{2} + 12 \beta_{3} ) q^{59} + ( -12 + 6 \beta_{2} ) q^{61} + ( -3 - \beta_{1} + 7 \beta_{2} - \beta_{3} ) q^{62} + ( 7 - 5 \beta_{1} - 5 \beta_{2} + 5 \beta_{3} ) q^{64} + 6 \beta_{2} q^{65} + ( -8 - 8 \beta_{1} + 4 \beta_{3} ) q^{68} + ( -6 - 2 \beta_{1} + 2 \beta_{2} + \beta_{3} ) q^{70} + ( 2 - 4 \beta_{1} - 4 \beta_{2} + 4 \beta_{3} ) q^{71} + ( -4 - 4 \beta_{2} ) q^{73} + 7 \beta_{2} q^{77} + ( 3 \beta_{2} - 6 \beta_{3} ) q^{79} + ( -1 + 3 \beta_{1} + 5 \beta_{2} - 6 \beta_{3} ) q^{80} + ( -4 + 4 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} ) q^{82} + ( -1 + 2 \beta_{1} + 2 \beta_{3} ) q^{83} + 12 q^{85} + ( -16 \beta_{2} + 4 \beta_{3} ) q^{86} + ( 1 + 5 \beta_{1} - \beta_{2} ) q^{88} + ( 12 - 6 \beta_{2} ) q^{89} + ( 2 - 4 \beta_{1} - 6 \beta_{2} + 8 \beta_{3} ) q^{91} + ( -10 + 6 \beta_{1} + 6 \beta_{2} - 6 \beta_{3} ) q^{92} + ( 6 + 2 \beta_{1} + 10 \beta_{2} - 4 \beta_{3} ) q^{94} + ( 5 - 10 \beta_{2} ) q^{97} + ( -7 + 7 \beta_{1} + 7 \beta_{2} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + q^{2} + 3q^{4} - 6q^{5} + 10q^{8} + O(q^{10}) \) \( 4q + q^{2} + 3q^{4} - 6q^{5} + 10q^{8} - 3q^{10} + 14q^{14} - q^{16} - 24q^{17} + 14q^{22} - 4q^{25} + 6q^{26} + 7q^{28} - 20q^{29} + 11q^{32} - 15q^{40} + 7q^{44} - 14q^{46} + 14q^{49} - 4q^{50} - 18q^{52} + 14q^{53} + 7q^{56} - 5q^{58} - 36q^{61} + 18q^{64} + 12q^{65} - 36q^{68} - 21q^{70} - 24q^{73} + 14q^{77} + 3q^{80} - 6q^{82} + 48q^{85} - 28q^{86} + 7q^{88} + 36q^{89} - 28q^{92} + 42q^{94} - 7q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - x^{3} - x^{2} - 2 x + 4\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{3} + \nu^{2} - \nu - 2 \)\()/2\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{3} + \nu^{2} + \nu + 2 \)\()/2\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{3} + \beta_{2}\)
\(\nu^{3}\)\(=\)\(-\beta_{3} + \beta_{2} + \beta_{1} + 2\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(\beta_{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
−0.895644 + 1.09445i
1.39564 0.228425i
−0.895644 1.09445i
1.39564 + 0.228425i
−0.895644 1.09445i 0 −0.395644 + 1.96048i −1.50000 0.866025i 0 −2.29129 + 1.32288i 2.50000 1.32288i 0 0.395644 + 2.41733i
19.2 1.39564 + 0.228425i 0 1.89564 + 0.637600i −1.50000 0.866025i 0 2.29129 1.32288i 2.50000 + 1.32288i 0 −1.89564 1.55130i
199.1 −0.895644 + 1.09445i 0 −0.395644 1.96048i −1.50000 + 0.866025i 0 −2.29129 1.32288i 2.50000 + 1.32288i 0 0.395644 2.41733i
199.2 1.39564 0.228425i 0 1.89564 0.637600i −1.50000 + 0.866025i 0 2.29129 + 1.32288i 2.50000 1.32288i 0 −1.89564 + 1.55130i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
7.d odd 6 1 inner
28.f even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 252.2.bf.d yes 4
3.b odd 2 1 252.2.bf.a 4
4.b odd 2 1 inner 252.2.bf.d yes 4
7.c even 3 1 1764.2.b.b 4
7.d odd 6 1 inner 252.2.bf.d yes 4
7.d odd 6 1 1764.2.b.b 4
12.b even 2 1 252.2.bf.a 4
21.g even 6 1 252.2.bf.a 4
21.g even 6 1 1764.2.b.h 4
21.h odd 6 1 1764.2.b.h 4
28.f even 6 1 inner 252.2.bf.d yes 4
28.f even 6 1 1764.2.b.b 4
28.g odd 6 1 1764.2.b.b 4
84.j odd 6 1 252.2.bf.a 4
84.j odd 6 1 1764.2.b.h 4
84.n even 6 1 1764.2.b.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.2.bf.a 4 3.b odd 2 1
252.2.bf.a 4 12.b even 2 1
252.2.bf.a 4 21.g even 6 1
252.2.bf.a 4 84.j odd 6 1
252.2.bf.d yes 4 1.a even 1 1 trivial
252.2.bf.d yes 4 4.b odd 2 1 inner
252.2.bf.d yes 4 7.d odd 6 1 inner
252.2.bf.d yes 4 28.f even 6 1 inner
1764.2.b.b 4 7.c even 3 1
1764.2.b.b 4 7.d odd 6 1
1764.2.b.b 4 28.f even 6 1
1764.2.b.b 4 28.g odd 6 1
1764.2.b.h 4 21.g even 6 1
1764.2.b.h 4 21.h odd 6 1
1764.2.b.h 4 84.j odd 6 1
1764.2.b.h 4 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(252, [\chi])\):

\( T_{5}^{2} + 3 T_{5} + 3 \)
\( T_{11}^{4} - 7 T_{11}^{2} + 49 \)
\( T_{19} \)