Properties

Label 252.2.bb
Level $252$
Weight $2$
Character orbit 252.bb
Rep. character $\chi_{252}(11,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $88$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 252.bb (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 252 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(252, [\chi])\).

Total New Old
Modular forms 104 104 0
Cusp forms 88 88 0
Eisenstein series 16 16 0

Trace form

\( 88 q - 2 q^{4} - 6 q^{5} - 6 q^{6} - 2 q^{9} + 2 q^{10} + 6 q^{12} - 4 q^{13} - 18 q^{14} - 2 q^{16} + 2 q^{18} - 6 q^{20} - 6 q^{21} - 6 q^{22} - 14 q^{24} + 30 q^{25} + 6 q^{26} - 24 q^{29} - 29 q^{30}+ \cdots + 57 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(252, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
252.2.bb.a 252.bb 252.ab $88$ $2.012$ None 252.2.o.a \(0\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{6}]$