Defining parameters
Level: | \( N \) | \(=\) | \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 252.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(252))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 60 | 2 | 58 |
Cusp forms | 37 | 2 | 35 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | Fricke | Dim |
---|---|---|---|---|
\(-\) | \(-\) | \(+\) | $+$ | \(1\) |
\(-\) | \(-\) | \(-\) | $-$ | \(1\) |
Plus space | \(+\) | \(1\) | ||
Minus space | \(-\) | \(1\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(252))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 7 | |||||||
252.2.a.a | $1$ | $2.012$ | \(\Q\) | None | \(0\) | \(0\) | \(-4\) | \(-1\) | $-$ | $-$ | $+$ | \(q-4q^{5}-q^{7}-2q^{11}-6q^{13}+4q^{17}+\cdots\) | |
252.2.a.b | $1$ | $2.012$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(1\) | $-$ | $-$ | $-$ | \(q+q^{7}+6q^{11}+2q^{13}-4q^{19}+6q^{23}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(252))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(252)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 2}\)