Properties

Label 2511.1.m.e
Level $2511$
Weight $1$
Character orbit 2511.m
Analytic conductor $1.253$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -31
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2511,1,Mod(433,2511)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2511, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2511.433");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2511 = 3^{4} \cdot 31 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2511.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.25315224672\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.31.1
Artin image: $C_3\times S_3$
Artin field: Galois closure of 6.0.195458751.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{6}^{2} q^{2} + \zeta_{6} q^{5} - \zeta_{6}^{2} q^{7} + q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q - \zeta_{6}^{2} q^{2} + \zeta_{6} q^{5} - \zeta_{6}^{2} q^{7} + q^{8} + q^{10} - \zeta_{6} q^{14} - \zeta_{6}^{2} q^{16} - q^{19} - \zeta_{6} q^{31} + q^{35} + \zeta_{6}^{2} q^{38} + \zeta_{6} q^{40} + \zeta_{6} q^{41} + 2 \zeta_{6}^{2} q^{47} - \zeta_{6}^{2} q^{56} + \zeta_{6} q^{59} - q^{62} + q^{64} - 2 \zeta_{6} q^{67} - \zeta_{6}^{2} q^{70} - q^{71} + q^{80} + q^{82} + 2 \zeta_{6} q^{94} - \zeta_{6} q^{95} - \zeta_{6}^{2} q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + q^{5} + q^{7} + 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} + q^{5} + q^{7} + 2 q^{8} + 2 q^{10} - q^{14} + q^{16} - 2 q^{19} - q^{31} + 2 q^{35} - q^{38} + q^{40} + q^{41} - 2 q^{47} + q^{56} + q^{59} - 2 q^{62} + 2 q^{64} - 2 q^{67} + q^{70} - 2 q^{71} + 2 q^{80} + 2 q^{82} + 2 q^{94} - q^{95} + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2511\mathbb{Z}\right)^\times\).

\(n\) \(406\) \(1055\)
\(\chi(n)\) \(-1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
433.1
0.500000 0.866025i
0.500000 + 0.866025i
0.500000 + 0.866025i 0 0 0.500000 0.866025i 0 0.500000 + 0.866025i 1.00000 0 1.00000
1270.1 0.500000 0.866025i 0 0 0.500000 + 0.866025i 0 0.500000 0.866025i 1.00000 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.b odd 2 1 CM by \(\Q(\sqrt{-31}) \)
9.c even 3 1 inner
279.m odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2511.1.m.e 2
3.b odd 2 1 2511.1.m.a 2
9.c even 3 1 31.1.b.a 1
9.c even 3 1 inner 2511.1.m.e 2
9.d odd 6 1 279.1.d.b 1
9.d odd 6 1 2511.1.m.a 2
31.b odd 2 1 CM 2511.1.m.e 2
36.f odd 6 1 496.1.e.a 1
45.j even 6 1 775.1.d.b 1
45.k odd 12 2 775.1.c.a 2
63.g even 3 1 1519.1.n.b 2
63.h even 3 1 1519.1.n.b 2
63.k odd 6 1 1519.1.n.a 2
63.l odd 6 1 1519.1.c.a 1
63.t odd 6 1 1519.1.n.a 2
72.n even 6 1 1984.1.e.a 1
72.p odd 6 1 1984.1.e.b 1
93.c even 2 1 2511.1.m.a 2
99.h odd 6 1 3751.1.d.b 1
99.m even 15 4 3751.1.t.c 4
99.o odd 30 4 3751.1.t.a 4
279.e even 3 1 961.1.e.a 2
279.g even 3 1 961.1.e.a 2
279.l odd 6 1 961.1.e.a 2
279.m odd 6 1 31.1.b.a 1
279.m odd 6 1 inner 2511.1.m.e 2
279.n odd 6 1 961.1.e.a 2
279.s even 6 1 279.1.d.b 1
279.s even 6 1 2511.1.m.a 2
279.z even 15 4 961.1.f.a 4
279.ba even 15 4 961.1.h.a 8
279.bb even 15 4 961.1.h.a 8
279.bj odd 30 4 961.1.f.a 4
279.bk odd 30 4 961.1.h.a 8
279.bl odd 30 4 961.1.h.a 8
1116.v even 6 1 496.1.e.a 1
1395.bm odd 6 1 775.1.d.b 1
1395.cm even 12 2 775.1.c.a 2
1953.bm even 6 1 1519.1.n.a 2
1953.cb even 6 1 1519.1.c.a 1
1953.ck odd 6 1 1519.1.n.b 2
1953.eb odd 6 1 1519.1.n.b 2
1953.eg even 6 1 1519.1.n.a 2
2232.ca odd 6 1 1984.1.e.a 1
2232.cq even 6 1 1984.1.e.b 1
3069.bh even 6 1 3751.1.d.b 1
3069.gp even 30 4 3751.1.t.a 4
3069.ix odd 30 4 3751.1.t.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
31.1.b.a 1 9.c even 3 1
31.1.b.a 1 279.m odd 6 1
279.1.d.b 1 9.d odd 6 1
279.1.d.b 1 279.s even 6 1
496.1.e.a 1 36.f odd 6 1
496.1.e.a 1 1116.v even 6 1
775.1.c.a 2 45.k odd 12 2
775.1.c.a 2 1395.cm even 12 2
775.1.d.b 1 45.j even 6 1
775.1.d.b 1 1395.bm odd 6 1
961.1.e.a 2 279.e even 3 1
961.1.e.a 2 279.g even 3 1
961.1.e.a 2 279.l odd 6 1
961.1.e.a 2 279.n odd 6 1
961.1.f.a 4 279.z even 15 4
961.1.f.a 4 279.bj odd 30 4
961.1.h.a 8 279.ba even 15 4
961.1.h.a 8 279.bb even 15 4
961.1.h.a 8 279.bk odd 30 4
961.1.h.a 8 279.bl odd 30 4
1519.1.c.a 1 63.l odd 6 1
1519.1.c.a 1 1953.cb even 6 1
1519.1.n.a 2 63.k odd 6 1
1519.1.n.a 2 63.t odd 6 1
1519.1.n.a 2 1953.bm even 6 1
1519.1.n.a 2 1953.eg even 6 1
1519.1.n.b 2 63.g even 3 1
1519.1.n.b 2 63.h even 3 1
1519.1.n.b 2 1953.ck odd 6 1
1519.1.n.b 2 1953.eb odd 6 1
1984.1.e.a 1 72.n even 6 1
1984.1.e.a 1 2232.ca odd 6 1
1984.1.e.b 1 72.p odd 6 1
1984.1.e.b 1 2232.cq even 6 1
2511.1.m.a 2 3.b odd 2 1
2511.1.m.a 2 9.d odd 6 1
2511.1.m.a 2 93.c even 2 1
2511.1.m.a 2 279.s even 6 1
2511.1.m.e 2 1.a even 1 1 trivial
2511.1.m.e 2 9.c even 3 1 inner
2511.1.m.e 2 31.b odd 2 1 CM
2511.1.m.e 2 279.m odd 6 1 inner
3751.1.d.b 1 99.h odd 6 1
3751.1.d.b 1 3069.bh even 6 1
3751.1.t.a 4 99.o odd 30 4
3751.1.t.a 4 3069.gp even 30 4
3751.1.t.c 4 99.m even 15 4
3751.1.t.c 4 3069.ix odd 30 4

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2511, [\chi])\):

\( T_{2}^{2} - T_{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{2} - T_{7} + 1 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( (T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$71$ \( (T + 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - T + 1 \) Copy content Toggle raw display
show more
show less