Properties

Label 2500.1.h.b
Level $2500$
Weight $1$
Character orbit 2500.h
Analytic conductor $1.248$
Analytic rank $0$
Dimension $4$
Projective image $D_{5}$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2500 = 2^{2} \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2500.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.24766253158\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 500)
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.250000.1

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{10}^{4} q^{2} + ( - \zeta_{10} + 1) q^{3} - \zeta_{10}^{3} q^{4} + (\zeta_{10}^{4} + 1) q^{6} + (\zeta_{10}^{4} - \zeta_{10}) q^{7} + \zeta_{10}^{2} q^{8} + (\zeta_{10}^{2} - \zeta_{10} + 1) q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{10}^{4} q^{2} + ( - \zeta_{10} + 1) q^{3} - \zeta_{10}^{3} q^{4} + (\zeta_{10}^{4} + 1) q^{6} + (\zeta_{10}^{4} - \zeta_{10}) q^{7} + \zeta_{10}^{2} q^{8} + (\zeta_{10}^{2} - \zeta_{10} + 1) q^{9} + (\zeta_{10}^{4} - \zeta_{10}^{3}) q^{12} + ( - \zeta_{10}^{3} + 1) q^{14} - \zeta_{10} q^{16} + (\zeta_{10}^{4} - \zeta_{10} + 1) q^{18} + (\zeta_{10}^{4} + \zeta_{10}^{2} - \zeta_{10} + 1) q^{21} + ( - \zeta_{10}^{3} + 1) q^{23} + ( - \zeta_{10}^{3} + \zeta_{10}^{2}) q^{24} + ( - \zeta_{10}^{3} + \zeta_{10}^{2} - \zeta_{10} + 1) q^{27} + (\zeta_{10}^{4} + \zeta_{10}^{2}) q^{28} + ( - \zeta_{10} + 1) q^{29} + q^{32} + (\zeta_{10}^{4} - \zeta_{10}^{3} + 1) q^{36} + (\zeta_{10}^{4} - \zeta_{10}^{3}) q^{41} + (\zeta_{10}^{4} - \zeta_{10}^{3} - \zeta_{10} + 1) q^{42} + ( - \zeta_{10}^{3} + \zeta_{10}^{2}) q^{43} + (\zeta_{10}^{4} + \zeta_{10}^{2}) q^{46} + ( - \zeta_{10} + 1) q^{47} + (\zeta_{10}^{2} - \zeta_{10}) q^{48} + ( - \zeta_{10}^{3} + \zeta_{10}^{2} + 1) q^{49} + (\zeta_{10}^{4} + \zeta_{10}^{2} - \zeta_{10} + 1) q^{54} + ( - \zeta_{10}^{3} - \zeta_{10}) q^{56} + (\zeta_{10}^{4} + 1) q^{58} + ( - \zeta_{10}^{3} + 1) q^{61} + (\zeta_{10}^{4} - \zeta_{10}^{3} + \zeta_{10}^{2} - \zeta_{10} + 1) q^{63} + \zeta_{10}^{4} q^{64} + \zeta_{10}^{2} q^{67} + (\zeta_{10}^{4} - \zeta_{10}^{3} - \zeta_{10} + 1) q^{69} + (\zeta_{10}^{4} - \zeta_{10}^{3} + \zeta_{10}^{2}) q^{72} + (\zeta_{10}^{4} - \zeta_{10}^{3} + \zeta_{10}^{2} - \zeta_{10} + 1) q^{81} + ( - \zeta_{10}^{3} + \zeta_{10}^{2}) q^{82} + ( - \zeta_{10}^{3} - \zeta_{10}) q^{83} + (\zeta_{10}^{4} - \zeta_{10}^{3} + \zeta_{10}^{2} + 1) q^{84} + (\zeta_{10}^{2} - \zeta_{10}) q^{86} + (\zeta_{10}^{2} - 2 \zeta_{10} + 1) q^{87} + ( - \zeta_{10}^{3} + 1) q^{89} + ( - \zeta_{10}^{3} - \zeta_{10}) q^{92} + (\zeta_{10}^{4} + 1) q^{94} + ( - \zeta_{10} + 1) q^{96} + (\zeta_{10}^{4} + \zeta_{10}^{2} - \zeta_{10}) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 3 q^{3} - q^{4} + 3 q^{6} - 2 q^{7} - q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - q^{2} + 3 q^{3} - q^{4} + 3 q^{6} - 2 q^{7} - q^{8} + 2 q^{9} - 2 q^{12} + 3 q^{14} - q^{16} + 2 q^{18} + q^{21} + 3 q^{23} - 2 q^{24} + q^{27} - 2 q^{28} + 3 q^{29} + 4 q^{32} + 2 q^{36} - 2 q^{41} + q^{42} - 2 q^{43} - 2 q^{46} + 3 q^{47} - 2 q^{48} + 2 q^{49} + q^{54} - 2 q^{56} + 3 q^{58} + 3 q^{61} - q^{63} - q^{64} - 2 q^{67} + q^{69} - 3 q^{72} - 2 q^{82} - 2 q^{83} + q^{84} - 2 q^{86} + q^{87} + 3 q^{89} - 2 q^{92} + 3 q^{94} + 3 q^{96} - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2500\mathbb{Z}\right)^\times\).

\(n\) \(1251\) \(1877\)
\(\chi(n)\) \(-1\) \(\zeta_{10}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
499.1
−0.309017 + 0.951057i
0.809017 + 0.587785i
0.809017 0.587785i
−0.309017 0.951057i
0.309017 + 0.951057i 1.30902 0.951057i −0.809017 + 0.587785i 0 1.30902 + 0.951057i 0.618034 −0.809017 0.587785i 0.500000 1.53884i 0
999.1 −0.809017 + 0.587785i 0.190983 0.587785i 0.309017 0.951057i 0 0.190983 + 0.587785i −1.61803 0.309017 + 0.951057i 0.500000 + 0.363271i 0
1499.1 −0.809017 0.587785i 0.190983 + 0.587785i 0.309017 + 0.951057i 0 0.190983 0.587785i −1.61803 0.309017 0.951057i 0.500000 0.363271i 0
1999.1 0.309017 0.951057i 1.30902 + 0.951057i −0.809017 0.587785i 0 1.30902 0.951057i 0.618034 −0.809017 + 0.587785i 0.500000 + 1.53884i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
25.d even 5 1 inner
100.h odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2500.1.h.b 4
4.b odd 2 1 2500.1.h.c 4
5.b even 2 1 2500.1.h.c 4
5.c odd 4 2 2500.1.j.d 8
20.d odd 2 1 CM 2500.1.h.b 4
20.e even 4 2 2500.1.j.d 8
25.d even 5 1 500.1.d.b 2
25.d even 5 2 2500.1.h.a 4
25.d even 5 1 inner 2500.1.h.b 4
25.e even 10 1 500.1.d.a 2
25.e even 10 1 2500.1.h.c 4
25.e even 10 2 2500.1.h.d 4
25.f odd 20 2 500.1.b.a 4
25.f odd 20 4 2500.1.j.c 8
25.f odd 20 2 2500.1.j.d 8
100.h odd 10 1 500.1.d.b 2
100.h odd 10 2 2500.1.h.a 4
100.h odd 10 1 inner 2500.1.h.b 4
100.j odd 10 1 500.1.d.a 2
100.j odd 10 1 2500.1.h.c 4
100.j odd 10 2 2500.1.h.d 4
100.l even 20 2 500.1.b.a 4
100.l even 20 4 2500.1.j.c 8
100.l even 20 2 2500.1.j.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
500.1.b.a 4 25.f odd 20 2
500.1.b.a 4 100.l even 20 2
500.1.d.a 2 25.e even 10 1
500.1.d.a 2 100.j odd 10 1
500.1.d.b 2 25.d even 5 1
500.1.d.b 2 100.h odd 10 1
2500.1.h.a 4 25.d even 5 2
2500.1.h.a 4 100.h odd 10 2
2500.1.h.b 4 1.a even 1 1 trivial
2500.1.h.b 4 20.d odd 2 1 CM
2500.1.h.b 4 25.d even 5 1 inner
2500.1.h.b 4 100.h odd 10 1 inner
2500.1.h.c 4 4.b odd 2 1
2500.1.h.c 4 5.b even 2 1
2500.1.h.c 4 25.e even 10 1
2500.1.h.c 4 100.j odd 10 1
2500.1.h.d 4 25.e even 10 2
2500.1.h.d 4 100.j odd 10 2
2500.1.j.c 8 25.f odd 20 4
2500.1.j.c 8 100.l even 20 4
2500.1.j.d 8 5.c odd 4 2
2500.1.j.d 8 20.e even 4 2
2500.1.j.d 8 25.f odd 20 2
2500.1.j.d 8 100.l even 20 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 3T_{3}^{3} + 4T_{3}^{2} - 2T_{3} + 1 \) acting on \(S_{1}^{\mathrm{new}}(2500, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + T^{3} + T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{4} - 3 T^{3} + 4 T^{2} - 2 T + 1 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 3 T^{3} + 4 T^{2} - 2 T + 1 \) Copy content Toggle raw display
$29$ \( T^{4} - 3 T^{3} + 4 T^{2} - 2 T + 1 \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + 2 T^{3} + 4 T^{2} + 3 T + 1 \) Copy content Toggle raw display
$43$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 3 T^{3} + 4 T^{2} - 2 T + 1 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} - 3 T^{3} + 4 T^{2} - 2 T + 1 \) Copy content Toggle raw display
$67$ \( T^{4} + 2 T^{3} + 4 T^{2} + 8 T + 16 \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} + 2 T^{3} + 4 T^{2} + 3 T + 1 \) Copy content Toggle raw display
$89$ \( T^{4} - 3 T^{3} + 4 T^{2} - 2 T + 1 \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less