Properties

Label 25.9
Level 25
Weight 9
Dimension 174
Nonzero newspaces 2
Newform subspaces 4
Sturm bound 450
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 25 = 5^{2} \)
Weight: \( k \) = \( 9 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 4 \)
Sturm bound: \(450\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(25))\).

Total New Old
Modular forms 214 194 20
Cusp forms 186 174 12
Eisenstein series 28 20 8

Trace form

\( 174 q - 6 q^{2} + 134 q^{3} - 10 q^{4} - 230 q^{5} - 3522 q^{6} + 4694 q^{7} + 16430 q^{8} - 10 q^{9} - 30880 q^{10} - 46402 q^{11} + 91814 q^{12} + 238274 q^{13} - 10 q^{14} - 241450 q^{15} - 175106 q^{16}+ \cdots + 178217846 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(25))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
25.9.c \(\chi_{25}(7, \cdot)\) 25.9.c.a 4 2
25.9.c.b 6
25.9.c.c 12
25.9.f \(\chi_{25}(2, \cdot)\) 25.9.f.a 152 8

Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(25))\) into lower level spaces

\( S_{9}^{\mathrm{old}}(\Gamma_1(25)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)