Properties

Label 25.8
Level 25
Weight 8
Dimension 151
Nonzero newspaces 4
Newform subspaces 10
Sturm bound 400
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 25 = 5^{2} \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 10 \)
Sturm bound: \(400\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(25))\).

Total New Old
Modular forms 189 172 17
Cusp forms 161 151 10
Eisenstein series 28 21 7

Trace form

\( 151 q - 22 q^{2} + 46 q^{3} - 386 q^{4} - 35 q^{5} + 2062 q^{6} + 3478 q^{7} - 4570 q^{8} - 15924 q^{9} - 1560 q^{10} + 17862 q^{11} + 53238 q^{12} - 14814 q^{13} - 79162 q^{14} - 8910 q^{15} - 6514 q^{16}+ \cdots + 141831852 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(25))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
25.8.a \(\chi_{25}(1, \cdot)\) 25.8.a.a 1 1
25.8.a.b 2
25.8.a.c 2
25.8.a.d 2
25.8.a.e 2
25.8.b \(\chi_{25}(24, \cdot)\) 25.8.b.a 2 1
25.8.b.b 4
25.8.b.c 4
25.8.d \(\chi_{25}(6, \cdot)\) 25.8.d.a 68 4
25.8.e \(\chi_{25}(4, \cdot)\) 25.8.e.a 64 4

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(25))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(25)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)