Properties

Label 25.6.b.b
Level $25$
Weight $6$
Character orbit 25.b
Analytic conductor $4.010$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [25,6,Mod(24,25)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("25.24"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(25, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 25.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.00959549532\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{241})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 121x^{2} + 3600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - \beta_1) q^{2} + ( - \beta_{2} - 2 \beta_1) q^{3} + (\beta_{3} - 35) q^{4} + ( - \beta_{3} - 95) q^{6} + (18 \beta_{2} + 4 \beta_1) q^{7} + ( - 69 \beta_{2} + 15 \beta_1) q^{8} + ( - 8 \beta_{3} - 94) q^{9}+ \cdots + ( - 196 \beta_{3} - 110798) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 138 q^{4} - 382 q^{6} - 392 q^{9} - 392 q^{11} - 36 q^{14} + 2274 q^{16} + 6360 q^{19} + 5928 q^{21} - 5070 q^{24} - 9512 q^{26} + 7840 q^{29} - 2192 q^{31} - 40226 q^{34} - 34676 q^{36} - 8224 q^{39}+ \cdots - 443584 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 121x^{2} + 3600 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} - 81\nu ) / 20 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} - 61\nu ) / 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 5\nu^{2} + 303 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 3\beta_{2} - 5\beta_1 ) / 5 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 303 ) / 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -243\beta_{2} + 305\beta_1 ) / 5 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/25\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
24.1
8.26209i
7.26209i
7.26209i
8.26209i
10.2621i 5.52417i −73.3104 0 −56.6896 68.9517i 423.931i 212.483 0
24.2 5.26209i 25.5242i 4.31044 0 −134.310 131.048i 191.069i −408.483 0
24.3 5.26209i 25.5242i 4.31044 0 −134.310 131.048i 191.069i −408.483 0
24.4 10.2621i 5.52417i −73.3104 0 −56.6896 68.9517i 423.931i 212.483 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 25.6.b.b 4
3.b odd 2 1 225.6.b.i 4
4.b odd 2 1 400.6.c.n 4
5.b even 2 1 inner 25.6.b.b 4
5.c odd 4 1 25.6.a.b 2
5.c odd 4 1 25.6.a.d yes 2
15.d odd 2 1 225.6.b.i 4
15.e even 4 1 225.6.a.l 2
15.e even 4 1 225.6.a.s 2
20.d odd 2 1 400.6.c.n 4
20.e even 4 1 400.6.a.o 2
20.e even 4 1 400.6.a.w 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
25.6.a.b 2 5.c odd 4 1
25.6.a.d yes 2 5.c odd 4 1
25.6.b.b 4 1.a even 1 1 trivial
25.6.b.b 4 5.b even 2 1 inner
225.6.a.l 2 15.e even 4 1
225.6.a.s 2 15.e even 4 1
225.6.b.i 4 3.b odd 2 1
225.6.b.i 4 15.d odd 2 1
400.6.a.o 2 20.e even 4 1
400.6.a.w 2 20.e even 4 1
400.6.c.n 4 4.b odd 2 1
400.6.c.n 4 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 133T_{2}^{2} + 2916 \) acting on \(S_{6}^{\mathrm{new}}(25, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 133T^{2} + 2916 \) Copy content Toggle raw display
$3$ \( T^{4} + 682 T^{2} + 19881 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 21928 T^{2} + 81649296 \) Copy content Toggle raw display
$11$ \( (T^{2} + 196 T - 141021)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 188192 T^{2} + 858255616 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 312882490881 \) Copy content Toggle raw display
$19$ \( (T^{2} - 3180 T + 2232875)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 359668876176 \) Copy content Toggle raw display
$29$ \( (T^{2} - 3920 T + 3456000)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 1096 T - 72602196)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 61844446287376 \) Copy content Toggle raw display
$41$ \( (T^{2} - 27754 T + 182931129)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 73\!\cdots\!96 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 495608042209536 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 21\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( (T^{2} + 11960 T - 195696000)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 24396 T - 92208796)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 62\!\cdots\!81 \) Copy content Toggle raw display
$71$ \( (T^{2} + 87296 T + 1844897904)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 13\!\cdots\!01 \) Copy content Toggle raw display
$79$ \( (T^{2} + 65480 T - 446416500)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 44\!\cdots\!61 \) Copy content Toggle raw display
$89$ \( (T^{2} - 72810 T - 5241540375)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 10\!\cdots\!36 \) Copy content Toggle raw display
show more
show less