Defining parameters
Level: | \( N \) | \(=\) | \( 25 = 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 25.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(15\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(25, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 16 | 8 | 8 |
Cusp forms | 10 | 6 | 4 |
Eisenstein series | 6 | 2 | 4 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(25, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
25.6.b.a | $2$ | $4.010$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+iq^{2}+2iq^{3}+28q^{4}-8q^{6}+96iq^{7}+\cdots\) |
25.6.b.b | $4$ | $4.010$ | \(\Q(i, \sqrt{241})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta _{1}+\beta _{2})q^{2}+(-2\beta _{1}-\beta _{2})q^{3}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(25, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(25, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 2}\)