Properties

Label 25.6.a.c.1.2
Level $25$
Weight $6$
Character 25.1
Self dual yes
Analytic conductor $4.010$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [25,6,Mod(1,25)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(25, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("25.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 25.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.00959549532\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{11}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.31662\) of defining polynomial
Character \(\chi\) \(=\) 25.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.63325 q^{2} +19.8997 q^{3} +12.0000 q^{4} +132.000 q^{6} -59.6992 q^{7} -132.665 q^{8} +153.000 q^{9} +252.000 q^{11} +238.797 q^{12} +119.398 q^{13} -396.000 q^{14} -1264.00 q^{16} -689.858 q^{17} +1014.89 q^{18} +220.000 q^{19} -1188.00 q^{21} +1671.58 q^{22} -2434.40 q^{23} -2640.00 q^{24} +792.000 q^{26} -1790.98 q^{27} -716.391 q^{28} +6930.00 q^{29} +6752.00 q^{31} -4139.15 q^{32} +5014.74 q^{33} -4576.00 q^{34} +1836.00 q^{36} +13969.6 q^{37} +1459.31 q^{38} +2376.00 q^{39} -198.000 q^{41} -7880.30 q^{42} +417.895 q^{43} +3024.00 q^{44} -16148.0 q^{46} -10540.2 q^{47} -25153.3 q^{48} -13243.0 q^{49} -13728.0 q^{51} +1432.78 q^{52} +5823.99 q^{53} -11880.0 q^{54} +7920.00 q^{56} +4377.94 q^{57} +45968.4 q^{58} +24660.0 q^{59} -5698.00 q^{61} +44787.7 q^{62} -9133.98 q^{63} +12992.0 q^{64} +33264.0 q^{66} -43640.1 q^{67} -8278.30 q^{68} -48444.0 q^{69} +53352.0 q^{71} -20297.7 q^{72} -70922.7 q^{73} +92664.0 q^{74} +2640.00 q^{76} -15044.2 q^{77} +15760.6 q^{78} -51920.0 q^{79} -72819.0 q^{81} -1313.38 q^{82} +61841.8 q^{83} -14256.0 q^{84} +2772.00 q^{86} +137905. q^{87} -33431.6 q^{88} +9990.00 q^{89} -7128.00 q^{91} -29212.8 q^{92} +134363. q^{93} -69916.0 q^{94} -82368.0 q^{96} -101250. q^{97} -87844.1 q^{98} +38556.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 24 q^{4} + 264 q^{6} + 306 q^{9} + 504 q^{11} - 792 q^{14} - 2528 q^{16} + 440 q^{19} - 2376 q^{21} - 5280 q^{24} + 1584 q^{26} + 13860 q^{29} + 13504 q^{31} - 9152 q^{34} + 3672 q^{36} + 4752 q^{39}+ \cdots + 77112 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 6.63325 1.17260 0.586302 0.810093i \(-0.300583\pi\)
0.586302 + 0.810093i \(0.300583\pi\)
\(3\) 19.8997 1.27657 0.638285 0.769800i \(-0.279644\pi\)
0.638285 + 0.769800i \(0.279644\pi\)
\(4\) 12.0000 0.375000
\(5\) 0 0
\(6\) 132.000 1.49691
\(7\) −59.6992 −0.460494 −0.230247 0.973132i \(-0.573953\pi\)
−0.230247 + 0.973132i \(0.573953\pi\)
\(8\) −132.665 −0.732877
\(9\) 153.000 0.629630
\(10\) 0 0
\(11\) 252.000 0.627941 0.313970 0.949433i \(-0.398341\pi\)
0.313970 + 0.949433i \(0.398341\pi\)
\(12\) 238.797 0.478714
\(13\) 119.398 0.195948 0.0979739 0.995189i \(-0.468764\pi\)
0.0979739 + 0.995189i \(0.468764\pi\)
\(14\) −396.000 −0.539977
\(15\) 0 0
\(16\) −1264.00 −1.23438
\(17\) −689.858 −0.578945 −0.289473 0.957186i \(-0.593480\pi\)
−0.289473 + 0.957186i \(0.593480\pi\)
\(18\) 1014.89 0.738306
\(19\) 220.000 0.139810 0.0699051 0.997554i \(-0.477730\pi\)
0.0699051 + 0.997554i \(0.477730\pi\)
\(20\) 0 0
\(21\) −1188.00 −0.587852
\(22\) 1671.58 0.736326
\(23\) −2434.40 −0.959561 −0.479781 0.877388i \(-0.659284\pi\)
−0.479781 + 0.877388i \(0.659284\pi\)
\(24\) −2640.00 −0.935569
\(25\) 0 0
\(26\) 792.000 0.229769
\(27\) −1790.98 −0.472804
\(28\) −716.391 −0.172685
\(29\) 6930.00 1.53016 0.765082 0.643932i \(-0.222698\pi\)
0.765082 + 0.643932i \(0.222698\pi\)
\(30\) 0 0
\(31\) 6752.00 1.26191 0.630955 0.775820i \(-0.282663\pi\)
0.630955 + 0.775820i \(0.282663\pi\)
\(32\) −4139.15 −0.714556
\(33\) 5014.74 0.801610
\(34\) −4576.00 −0.678873
\(35\) 0 0
\(36\) 1836.00 0.236111
\(37\) 13969.6 1.67757 0.838785 0.544464i \(-0.183267\pi\)
0.838785 + 0.544464i \(0.183267\pi\)
\(38\) 1459.31 0.163942
\(39\) 2376.00 0.250141
\(40\) 0 0
\(41\) −198.000 −0.0183952 −0.00919762 0.999958i \(-0.502928\pi\)
−0.00919762 + 0.999958i \(0.502928\pi\)
\(42\) −7880.30 −0.689318
\(43\) 417.895 0.0344664 0.0172332 0.999851i \(-0.494514\pi\)
0.0172332 + 0.999851i \(0.494514\pi\)
\(44\) 3024.00 0.235478
\(45\) 0 0
\(46\) −16148.0 −1.12519
\(47\) −10540.2 −0.695994 −0.347997 0.937496i \(-0.613138\pi\)
−0.347997 + 0.937496i \(0.613138\pi\)
\(48\) −25153.3 −1.57577
\(49\) −13243.0 −0.787945
\(50\) 0 0
\(51\) −13728.0 −0.739064
\(52\) 1432.78 0.0734804
\(53\) 5823.99 0.284794 0.142397 0.989810i \(-0.454519\pi\)
0.142397 + 0.989810i \(0.454519\pi\)
\(54\) −11880.0 −0.554411
\(55\) 0 0
\(56\) 7920.00 0.337485
\(57\) 4377.94 0.178477
\(58\) 45968.4 1.79428
\(59\) 24660.0 0.922281 0.461140 0.887327i \(-0.347440\pi\)
0.461140 + 0.887327i \(0.347440\pi\)
\(60\) 0 0
\(61\) −5698.00 −0.196064 −0.0980320 0.995183i \(-0.531255\pi\)
−0.0980320 + 0.995183i \(0.531255\pi\)
\(62\) 44787.7 1.47972
\(63\) −9133.98 −0.289941
\(64\) 12992.0 0.396484
\(65\) 0 0
\(66\) 33264.0 0.939971
\(67\) −43640.1 −1.18768 −0.593840 0.804583i \(-0.702389\pi\)
−0.593840 + 0.804583i \(0.702389\pi\)
\(68\) −8278.30 −0.217104
\(69\) −48444.0 −1.22495
\(70\) 0 0
\(71\) 53352.0 1.25604 0.628022 0.778196i \(-0.283865\pi\)
0.628022 + 0.778196i \(0.283865\pi\)
\(72\) −20297.7 −0.461441
\(73\) −70922.7 −1.55768 −0.778840 0.627223i \(-0.784192\pi\)
−0.778840 + 0.627223i \(0.784192\pi\)
\(74\) 92664.0 1.96712
\(75\) 0 0
\(76\) 2640.00 0.0524288
\(77\) −15044.2 −0.289163
\(78\) 15760.6 0.293316
\(79\) −51920.0 −0.935981 −0.467990 0.883734i \(-0.655022\pi\)
−0.467990 + 0.883734i \(0.655022\pi\)
\(80\) 0 0
\(81\) −72819.0 −1.23320
\(82\) −1313.38 −0.0215703
\(83\) 61841.8 0.985342 0.492671 0.870216i \(-0.336021\pi\)
0.492671 + 0.870216i \(0.336021\pi\)
\(84\) −14256.0 −0.220445
\(85\) 0 0
\(86\) 2772.00 0.0404154
\(87\) 137905. 1.95336
\(88\) −33431.6 −0.460204
\(89\) 9990.00 0.133687 0.0668437 0.997763i \(-0.478707\pi\)
0.0668437 + 0.997763i \(0.478707\pi\)
\(90\) 0 0
\(91\) −7128.00 −0.0902328
\(92\) −29212.8 −0.359836
\(93\) 134363. 1.61092
\(94\) −69916.0 −0.816125
\(95\) 0 0
\(96\) −82368.0 −0.912180
\(97\) −101250. −1.09261 −0.546305 0.837586i \(-0.683966\pi\)
−0.546305 + 0.837586i \(0.683966\pi\)
\(98\) −87844.1 −0.923948
\(99\) 38556.0 0.395370
\(100\) 0 0
\(101\) −109098. −1.06418 −0.532088 0.846689i \(-0.678592\pi\)
−0.532088 + 0.846689i \(0.678592\pi\)
\(102\) −91061.3 −0.866629
\(103\) −70624.2 −0.655935 −0.327967 0.944689i \(-0.606364\pi\)
−0.327967 + 0.944689i \(0.606364\pi\)
\(104\) −15840.0 −0.143606
\(105\) 0 0
\(106\) 38632.0 0.333951
\(107\) 97117.4 0.820045 0.410022 0.912075i \(-0.365521\pi\)
0.410022 + 0.912075i \(0.365521\pi\)
\(108\) −21491.7 −0.177301
\(109\) 21010.0 0.169379 0.0846895 0.996407i \(-0.473010\pi\)
0.0846895 + 0.996407i \(0.473010\pi\)
\(110\) 0 0
\(111\) 277992. 2.14153
\(112\) 75459.8 0.568422
\(113\) −105018. −0.773688 −0.386844 0.922145i \(-0.626435\pi\)
−0.386844 + 0.922145i \(0.626435\pi\)
\(114\) 29040.0 0.209283
\(115\) 0 0
\(116\) 83160.0 0.573812
\(117\) 18268.0 0.123375
\(118\) 163576. 1.08147
\(119\) 41184.0 0.266601
\(120\) 0 0
\(121\) −97547.0 −0.605690
\(122\) −37796.3 −0.229905
\(123\) −3940.15 −0.0234828
\(124\) 81024.0 0.473216
\(125\) 0 0
\(126\) −60588.0 −0.339985
\(127\) −87220.6 −0.479855 −0.239927 0.970791i \(-0.577124\pi\)
−0.239927 + 0.970791i \(0.577124\pi\)
\(128\) 218632. 1.17947
\(129\) 8316.00 0.0439987
\(130\) 0 0
\(131\) 192852. 0.981852 0.490926 0.871201i \(-0.336659\pi\)
0.490926 + 0.871201i \(0.336659\pi\)
\(132\) 60176.8 0.300604
\(133\) −13133.8 −0.0643817
\(134\) −289476. −1.39268
\(135\) 0 0
\(136\) 91520.0 0.424296
\(137\) −143570. −0.653525 −0.326763 0.945106i \(-0.605958\pi\)
−0.326763 + 0.945106i \(0.605958\pi\)
\(138\) −321341. −1.43638
\(139\) 318340. 1.39751 0.698754 0.715362i \(-0.253738\pi\)
0.698754 + 0.715362i \(0.253738\pi\)
\(140\) 0 0
\(141\) −209748. −0.888485
\(142\) 353897. 1.47284
\(143\) 30088.4 0.123044
\(144\) −193392. −0.777199
\(145\) 0 0
\(146\) −470448. −1.82654
\(147\) −263532. −1.00587
\(148\) 167635. 0.629088
\(149\) −84150.0 −0.310519 −0.155260 0.987874i \(-0.549621\pi\)
−0.155260 + 0.987874i \(0.549621\pi\)
\(150\) 0 0
\(151\) −155848. −0.556236 −0.278118 0.960547i \(-0.589711\pi\)
−0.278118 + 0.960547i \(0.589711\pi\)
\(152\) −29186.3 −0.102464
\(153\) −105548. −0.364521
\(154\) −99792.0 −0.339074
\(155\) 0 0
\(156\) 28512.0 0.0938029
\(157\) 356643. 1.15474 0.577371 0.816482i \(-0.304079\pi\)
0.577371 + 0.816482i \(0.304079\pi\)
\(158\) −344398. −1.09753
\(159\) 115896. 0.363560
\(160\) 0 0
\(161\) 145332. 0.441872
\(162\) −483027. −1.44605
\(163\) 144890. 0.427139 0.213570 0.976928i \(-0.431491\pi\)
0.213570 + 0.976928i \(0.431491\pi\)
\(164\) −2376.00 −0.00689822
\(165\) 0 0
\(166\) 410212. 1.15542
\(167\) −18102.1 −0.0502272 −0.0251136 0.999685i \(-0.507995\pi\)
−0.0251136 + 0.999685i \(0.507995\pi\)
\(168\) 157606. 0.430824
\(169\) −357037. −0.961604
\(170\) 0 0
\(171\) 33660.0 0.0880286
\(172\) 5014.74 0.0129249
\(173\) 492572. 1.25128 0.625640 0.780112i \(-0.284838\pi\)
0.625640 + 0.780112i \(0.284838\pi\)
\(174\) 914760. 2.29052
\(175\) 0 0
\(176\) −318528. −0.775115
\(177\) 490728. 1.17736
\(178\) 66266.2 0.156762
\(179\) −444420. −1.03672 −0.518359 0.855163i \(-0.673457\pi\)
−0.518359 + 0.855163i \(0.673457\pi\)
\(180\) 0 0
\(181\) 156902. 0.355985 0.177993 0.984032i \(-0.443040\pi\)
0.177993 + 0.984032i \(0.443040\pi\)
\(182\) −47281.8 −0.105807
\(183\) −113389. −0.250289
\(184\) 322960. 0.703241
\(185\) 0 0
\(186\) 891264. 1.88897
\(187\) −173844. −0.363543
\(188\) −126483. −0.260998
\(189\) 106920. 0.217723
\(190\) 0 0
\(191\) 332352. 0.659196 0.329598 0.944121i \(-0.393087\pi\)
0.329598 + 0.944121i \(0.393087\pi\)
\(192\) 258538. 0.506140
\(193\) −786120. −1.51913 −0.759566 0.650430i \(-0.774589\pi\)
−0.759566 + 0.650430i \(0.774589\pi\)
\(194\) −671616. −1.28120
\(195\) 0 0
\(196\) −158916. −0.295480
\(197\) 59606.4 0.109428 0.0547138 0.998502i \(-0.482575\pi\)
0.0547138 + 0.998502i \(0.482575\pi\)
\(198\) 255752. 0.463613
\(199\) 395800. 0.708505 0.354253 0.935150i \(-0.384735\pi\)
0.354253 + 0.935150i \(0.384735\pi\)
\(200\) 0 0
\(201\) −868428. −1.51616
\(202\) −723674. −1.24786
\(203\) −413716. −0.704631
\(204\) −164736. −0.277149
\(205\) 0 0
\(206\) −468468. −0.769151
\(207\) −372464. −0.604168
\(208\) −150920. −0.241873
\(209\) 55440.0 0.0877925
\(210\) 0 0
\(211\) −251548. −0.388969 −0.194484 0.980906i \(-0.562303\pi\)
−0.194484 + 0.980906i \(0.562303\pi\)
\(212\) 69887.9 0.106798
\(213\) 1.06169e6 1.60343
\(214\) 644204. 0.961588
\(215\) 0 0
\(216\) 237600. 0.346507
\(217\) −403089. −0.581101
\(218\) 139365. 0.198615
\(219\) −1.41134e6 −1.98849
\(220\) 0 0
\(221\) −82368.0 −0.113443
\(222\) 1.84399e6 2.51117
\(223\) 288765. 0.388851 0.194425 0.980917i \(-0.437716\pi\)
0.194425 + 0.980917i \(0.437716\pi\)
\(224\) 247104. 0.329048
\(225\) 0 0
\(226\) −696608. −0.907230
\(227\) 1.16414e6 1.49948 0.749741 0.661731i \(-0.230178\pi\)
0.749741 + 0.661731i \(0.230178\pi\)
\(228\) 52535.3 0.0669290
\(229\) −547670. −0.690129 −0.345064 0.938579i \(-0.612143\pi\)
−0.345064 + 0.938579i \(0.612143\pi\)
\(230\) 0 0
\(231\) −299376. −0.369137
\(232\) −919368. −1.12142
\(233\) −48104.3 −0.0580489 −0.0290245 0.999579i \(-0.509240\pi\)
−0.0290245 + 0.999579i \(0.509240\pi\)
\(234\) 121176. 0.144669
\(235\) 0 0
\(236\) 295920. 0.345855
\(237\) −1.03319e6 −1.19484
\(238\) 273184. 0.312617
\(239\) 1.00584e6 1.13903 0.569514 0.821982i \(-0.307132\pi\)
0.569514 + 0.821982i \(0.307132\pi\)
\(240\) 0 0
\(241\) 895202. 0.992838 0.496419 0.868083i \(-0.334648\pi\)
0.496419 + 0.868083i \(0.334648\pi\)
\(242\) −647054. −0.710235
\(243\) −1.01387e6 −1.10146
\(244\) −68376.0 −0.0735240
\(245\) 0 0
\(246\) −26136.0 −0.0275360
\(247\) 26267.7 0.0273955
\(248\) −895754. −0.924825
\(249\) 1.23064e6 1.25786
\(250\) 0 0
\(251\) 558252. 0.559301 0.279651 0.960102i \(-0.409781\pi\)
0.279651 + 0.960102i \(0.409781\pi\)
\(252\) −109608. −0.108728
\(253\) −613469. −0.602548
\(254\) −578556. −0.562680
\(255\) 0 0
\(256\) 1.03450e6 0.986572
\(257\) −787924. −0.744135 −0.372067 0.928206i \(-0.621351\pi\)
−0.372067 + 0.928206i \(0.621351\pi\)
\(258\) 55162.1 0.0515931
\(259\) −833976. −0.772510
\(260\) 0 0
\(261\) 1.06029e6 0.963437
\(262\) 1.27924e6 1.15132
\(263\) 1.63173e6 1.45465 0.727327 0.686291i \(-0.240762\pi\)
0.727327 + 0.686291i \(0.240762\pi\)
\(264\) −665280. −0.587482
\(265\) 0 0
\(266\) −87120.0 −0.0754942
\(267\) 198798. 0.170661
\(268\) −523682. −0.445380
\(269\) 1.73637e6 1.46306 0.731529 0.681810i \(-0.238807\pi\)
0.731529 + 0.681810i \(0.238807\pi\)
\(270\) 0 0
\(271\) −1.72005e6 −1.42271 −0.711357 0.702831i \(-0.751919\pi\)
−0.711357 + 0.702831i \(0.751919\pi\)
\(272\) 871980. 0.714635
\(273\) −141845. −0.115188
\(274\) −952336. −0.766326
\(275\) 0 0
\(276\) −581328. −0.459355
\(277\) 1.27243e6 0.996402 0.498201 0.867062i \(-0.333994\pi\)
0.498201 + 0.867062i \(0.333994\pi\)
\(278\) 2.11163e6 1.63872
\(279\) 1.03306e6 0.794536
\(280\) 0 0
\(281\) 1.46500e6 1.10681 0.553404 0.832913i \(-0.313329\pi\)
0.553404 + 0.832913i \(0.313329\pi\)
\(282\) −1.39131e6 −1.04184
\(283\) 1.65051e6 1.22504 0.612521 0.790455i \(-0.290156\pi\)
0.612521 + 0.790455i \(0.290156\pi\)
\(284\) 640224. 0.471016
\(285\) 0 0
\(286\) 199584. 0.144281
\(287\) 11820.5 0.00847089
\(288\) −633290. −0.449905
\(289\) −943953. −0.664823
\(290\) 0 0
\(291\) −2.01485e6 −1.39479
\(292\) −851072. −0.584130
\(293\) −2.38772e6 −1.62485 −0.812426 0.583064i \(-0.801854\pi\)
−0.812426 + 0.583064i \(0.801854\pi\)
\(294\) −1.74808e6 −1.17948
\(295\) 0 0
\(296\) −1.85328e6 −1.22945
\(297\) −451326. −0.296893
\(298\) −558188. −0.364116
\(299\) −290664. −0.188024
\(300\) 0 0
\(301\) −24948.0 −0.0158716
\(302\) −1.03378e6 −0.652244
\(303\) −2.17102e6 −1.35849
\(304\) −278080. −0.172578
\(305\) 0 0
\(306\) −700128. −0.427439
\(307\) 928264. 0.562115 0.281058 0.959691i \(-0.409315\pi\)
0.281058 + 0.959691i \(0.409315\pi\)
\(308\) −180531. −0.108436
\(309\) −1.40540e6 −0.837346
\(310\) 0 0
\(311\) 568152. 0.333092 0.166546 0.986034i \(-0.446739\pi\)
0.166546 + 0.986034i \(0.446739\pi\)
\(312\) −315212. −0.183323
\(313\) 1.72244e6 0.993766 0.496883 0.867818i \(-0.334478\pi\)
0.496883 + 0.867818i \(0.334478\pi\)
\(314\) 2.36570e6 1.35405
\(315\) 0 0
\(316\) −623040. −0.350993
\(317\) 131643. 0.0735785 0.0367893 0.999323i \(-0.488287\pi\)
0.0367893 + 0.999323i \(0.488287\pi\)
\(318\) 768767. 0.426311
\(319\) 1.74636e6 0.960853
\(320\) 0 0
\(321\) 1.93261e6 1.04684
\(322\) 964023. 0.518141
\(323\) −151769. −0.0809424
\(324\) −873828. −0.462449
\(325\) 0 0
\(326\) 961092. 0.500865
\(327\) 418094. 0.216224
\(328\) 26267.7 0.0134815
\(329\) 629244. 0.320501
\(330\) 0 0
\(331\) −1.58055e6 −0.792935 −0.396468 0.918049i \(-0.629764\pi\)
−0.396468 + 0.918049i \(0.629764\pi\)
\(332\) 742101. 0.369503
\(333\) 2.13735e6 1.05625
\(334\) −120076. −0.0588966
\(335\) 0 0
\(336\) 1.50163e6 0.725630
\(337\) 1.22885e6 0.589419 0.294709 0.955587i \(-0.404777\pi\)
0.294709 + 0.955587i \(0.404777\pi\)
\(338\) −2.36832e6 −1.12758
\(339\) −2.08982e6 −0.987667
\(340\) 0 0
\(341\) 1.70150e6 0.792405
\(342\) 223275. 0.103223
\(343\) 1.79396e6 0.823338
\(344\) −55440.0 −0.0252596
\(345\) 0 0
\(346\) 3.26735e6 1.46726
\(347\) −3.84224e6 −1.71301 −0.856506 0.516137i \(-0.827370\pi\)
−0.856506 + 0.516137i \(0.827370\pi\)
\(348\) 1.65486e6 0.732511
\(349\) 1.59445e6 0.700725 0.350362 0.936614i \(-0.386058\pi\)
0.350362 + 0.936614i \(0.386058\pi\)
\(350\) 0 0
\(351\) −213840. −0.0926448
\(352\) −1.04307e6 −0.448699
\(353\) 295365. 0.126160 0.0630802 0.998008i \(-0.479908\pi\)
0.0630802 + 0.998008i \(0.479908\pi\)
\(354\) 3.25512e6 1.38057
\(355\) 0 0
\(356\) 119880. 0.0501328
\(357\) 819551. 0.340334
\(358\) −2.94795e6 −1.21566
\(359\) −1.10484e6 −0.452442 −0.226221 0.974076i \(-0.572637\pi\)
−0.226221 + 0.974076i \(0.572637\pi\)
\(360\) 0 0
\(361\) −2.42770e6 −0.980453
\(362\) 1.04077e6 0.417430
\(363\) −1.94116e6 −0.773206
\(364\) −85536.0 −0.0338373
\(365\) 0 0
\(366\) −752136. −0.293490
\(367\) −1.83760e6 −0.712174 −0.356087 0.934453i \(-0.615889\pi\)
−0.356087 + 0.934453i \(0.615889\pi\)
\(368\) 3.07708e6 1.18446
\(369\) −30294.0 −0.0115822
\(370\) 0 0
\(371\) −347688. −0.131146
\(372\) 1.61236e6 0.604093
\(373\) −2.93350e6 −1.09173 −0.545864 0.837874i \(-0.683798\pi\)
−0.545864 + 0.837874i \(0.683798\pi\)
\(374\) −1.15315e6 −0.426292
\(375\) 0 0
\(376\) 1.39832e6 0.510078
\(377\) 827432. 0.299832
\(378\) 709227. 0.255303
\(379\) −5.09342e6 −1.82143 −0.910713 0.413040i \(-0.864467\pi\)
−0.910713 + 0.413040i \(0.864467\pi\)
\(380\) 0 0
\(381\) −1.73567e6 −0.612568
\(382\) 2.20457e6 0.772976
\(383\) −3.17485e6 −1.10593 −0.552964 0.833205i \(-0.686503\pi\)
−0.552964 + 0.833205i \(0.686503\pi\)
\(384\) 4.35072e6 1.50568
\(385\) 0 0
\(386\) −5.21453e6 −1.78134
\(387\) 63937.9 0.0217011
\(388\) −1.21500e6 −0.409729
\(389\) −1.79991e6 −0.603083 −0.301541 0.953453i \(-0.597501\pi\)
−0.301541 + 0.953453i \(0.597501\pi\)
\(390\) 0 0
\(391\) 1.67939e6 0.555533
\(392\) 1.75688e6 0.577467
\(393\) 3.83771e6 1.25340
\(394\) 395384. 0.128315
\(395\) 0 0
\(396\) 462672. 0.148264
\(397\) −4.90405e6 −1.56163 −0.780817 0.624760i \(-0.785197\pi\)
−0.780817 + 0.624760i \(0.785197\pi\)
\(398\) 2.62544e6 0.830796
\(399\) −261360. −0.0821877
\(400\) 0 0
\(401\) −642798. −0.199624 −0.0998122 0.995006i \(-0.531824\pi\)
−0.0998122 + 0.995006i \(0.531824\pi\)
\(402\) −5.76050e6 −1.77785
\(403\) 806179. 0.247268
\(404\) −1.30918e6 −0.399066
\(405\) 0 0
\(406\) −2.74428e6 −0.826254
\(407\) 3.52035e6 1.05341
\(408\) 1.82123e6 0.541643
\(409\) 2.05711e6 0.608064 0.304032 0.952662i \(-0.401667\pi\)
0.304032 + 0.952662i \(0.401667\pi\)
\(410\) 0 0
\(411\) −2.85701e6 −0.834271
\(412\) −847490. −0.245975
\(413\) −1.47218e6 −0.424704
\(414\) −2.47064e6 −0.708450
\(415\) 0 0
\(416\) −494208. −0.140016
\(417\) 6.33489e6 1.78402
\(418\) 367747. 0.102946
\(419\) 2.93742e6 0.817393 0.408697 0.912670i \(-0.365983\pi\)
0.408697 + 0.912670i \(0.365983\pi\)
\(420\) 0 0
\(421\) 2.71770e6 0.747303 0.373651 0.927569i \(-0.378106\pi\)
0.373651 + 0.927569i \(0.378106\pi\)
\(422\) −1.66858e6 −0.456106
\(423\) −1.61266e6 −0.438219
\(424\) −772640. −0.208719
\(425\) 0 0
\(426\) 7.04246e6 1.88019
\(427\) 340166. 0.0902862
\(428\) 1.16541e6 0.307517
\(429\) 598752. 0.157074
\(430\) 0 0
\(431\) 4.99435e6 1.29505 0.647524 0.762045i \(-0.275804\pi\)
0.647524 + 0.762045i \(0.275804\pi\)
\(432\) 2.26380e6 0.583617
\(433\) 2.08183e6 0.533612 0.266806 0.963750i \(-0.414032\pi\)
0.266806 + 0.963750i \(0.414032\pi\)
\(434\) −2.67379e6 −0.681402
\(435\) 0 0
\(436\) 252120. 0.0635172
\(437\) −535569. −0.134156
\(438\) −9.36180e6 −2.33171
\(439\) 4.70404e6 1.16496 0.582478 0.812846i \(-0.302083\pi\)
0.582478 + 0.812846i \(0.302083\pi\)
\(440\) 0 0
\(441\) −2.02618e6 −0.496114
\(442\) −546368. −0.133024
\(443\) 5.70103e6 1.38021 0.690103 0.723711i \(-0.257565\pi\)
0.690103 + 0.723711i \(0.257565\pi\)
\(444\) 3.33590e6 0.803075
\(445\) 0 0
\(446\) 1.91545e6 0.455968
\(447\) −1.67456e6 −0.396399
\(448\) −775613. −0.182579
\(449\) −6.20325e6 −1.45212 −0.726062 0.687630i \(-0.758651\pi\)
−0.726062 + 0.687630i \(0.758651\pi\)
\(450\) 0 0
\(451\) −49896.0 −0.0115511
\(452\) −1.26021e6 −0.290133
\(453\) −3.10134e6 −0.710074
\(454\) 7.72204e6 1.75830
\(455\) 0 0
\(456\) −580800. −0.130802
\(457\) −2.15371e6 −0.482388 −0.241194 0.970477i \(-0.577539\pi\)
−0.241194 + 0.970477i \(0.577539\pi\)
\(458\) −3.63283e6 −0.809248
\(459\) 1.23552e6 0.273727
\(460\) 0 0
\(461\) −3.85130e6 −0.844024 −0.422012 0.906590i \(-0.638676\pi\)
−0.422012 + 0.906590i \(0.638676\pi\)
\(462\) −1.98584e6 −0.432851
\(463\) 2.08213e6 0.451394 0.225697 0.974198i \(-0.427534\pi\)
0.225697 + 0.974198i \(0.427534\pi\)
\(464\) −8.75952e6 −1.88880
\(465\) 0 0
\(466\) −319088. −0.0680684
\(467\) 1.30822e6 0.277579 0.138790 0.990322i \(-0.455679\pi\)
0.138790 + 0.990322i \(0.455679\pi\)
\(468\) 219216. 0.0462655
\(469\) 2.60528e6 0.546919
\(470\) 0 0
\(471\) 7.09711e6 1.47411
\(472\) −3.27152e6 −0.675919
\(473\) 105309. 0.0216429
\(474\) −6.85344e6 −1.40108
\(475\) 0 0
\(476\) 494208. 0.0999752
\(477\) 891071. 0.179315
\(478\) 6.67199e6 1.33563
\(479\) 6.76368e6 1.34693 0.673464 0.739220i \(-0.264806\pi\)
0.673464 + 0.739220i \(0.264806\pi\)
\(480\) 0 0
\(481\) 1.66795e6 0.328716
\(482\) 5.93810e6 1.16421
\(483\) 2.89207e6 0.564080
\(484\) −1.17056e6 −0.227134
\(485\) 0 0
\(486\) −6.72527e6 −1.29157
\(487\) 6.67193e6 1.27476 0.637381 0.770549i \(-0.280018\pi\)
0.637381 + 0.770549i \(0.280018\pi\)
\(488\) 755925. 0.143691
\(489\) 2.88328e6 0.545273
\(490\) 0 0
\(491\) −6.87575e6 −1.28711 −0.643556 0.765399i \(-0.722542\pi\)
−0.643556 + 0.765399i \(0.722542\pi\)
\(492\) −47281.8 −0.00880605
\(493\) −4.78072e6 −0.885881
\(494\) 174240. 0.0321241
\(495\) 0 0
\(496\) −8.53453e6 −1.55767
\(497\) −3.18507e6 −0.578400
\(498\) 8.16312e6 1.47497
\(499\) −6.94010e6 −1.24771 −0.623856 0.781539i \(-0.714435\pi\)
−0.623856 + 0.781539i \(0.714435\pi\)
\(500\) 0 0
\(501\) −360228. −0.0641185
\(502\) 3.70302e6 0.655839
\(503\) −921007. −0.162309 −0.0811546 0.996702i \(-0.525861\pi\)
−0.0811546 + 0.996702i \(0.525861\pi\)
\(504\) 1.21176e6 0.212491
\(505\) 0 0
\(506\) −4.06930e6 −0.706550
\(507\) −7.10495e6 −1.22755
\(508\) −1.04665e6 −0.179946
\(509\) −4.97979e6 −0.851955 −0.425977 0.904734i \(-0.640070\pi\)
−0.425977 + 0.904734i \(0.640070\pi\)
\(510\) 0 0
\(511\) 4.23403e6 0.717302
\(512\) −134151. −0.0226161
\(513\) −394015. −0.0661027
\(514\) −5.22650e6 −0.872575
\(515\) 0 0
\(516\) 99792.0 0.0164995
\(517\) −2.65614e6 −0.437043
\(518\) −5.53197e6 −0.905848
\(519\) 9.80206e6 1.59735
\(520\) 0 0
\(521\) −147798. −0.0238547 −0.0119274 0.999929i \(-0.503797\pi\)
−0.0119274 + 0.999929i \(0.503797\pi\)
\(522\) 7.03317e6 1.12973
\(523\) −1.23884e7 −1.98043 −0.990216 0.139543i \(-0.955437\pi\)
−0.990216 + 0.139543i \(0.955437\pi\)
\(524\) 2.31422e6 0.368194
\(525\) 0 0
\(526\) 1.08237e7 1.70573
\(527\) −4.65792e6 −0.730576
\(528\) −6.33863e6 −0.989488
\(529\) −510027. −0.0792417
\(530\) 0 0
\(531\) 3.77298e6 0.580695
\(532\) −157606. −0.0241431
\(533\) −23640.9 −0.00360451
\(534\) 1.31868e6 0.200118
\(535\) 0 0
\(536\) 5.78952e6 0.870423
\(537\) −8.84385e6 −1.32344
\(538\) 1.15178e7 1.71559
\(539\) −3.33724e6 −0.494783
\(540\) 0 0
\(541\) −9.99810e6 −1.46867 −0.734335 0.678787i \(-0.762506\pi\)
−0.734335 + 0.678787i \(0.762506\pi\)
\(542\) −1.14095e7 −1.66828
\(543\) 3.12231e6 0.454440
\(544\) 2.85542e6 0.413688
\(545\) 0 0
\(546\) −940896. −0.135070
\(547\) 1.18580e7 1.69451 0.847253 0.531189i \(-0.178255\pi\)
0.847253 + 0.531189i \(0.178255\pi\)
\(548\) −1.72284e6 −0.245072
\(549\) −871794. −0.123448
\(550\) 0 0
\(551\) 1.52460e6 0.213933
\(552\) 6.42682e6 0.897736
\(553\) 3.09958e6 0.431013
\(554\) 8.44034e6 1.16838
\(555\) 0 0
\(556\) 3.82008e6 0.524065
\(557\) 904550. 0.123536 0.0617681 0.998091i \(-0.480326\pi\)
0.0617681 + 0.998091i \(0.480326\pi\)
\(558\) 6.85252e6 0.931676
\(559\) 49896.0 0.00675361
\(560\) 0 0
\(561\) −3.45946e6 −0.464088
\(562\) 9.71772e6 1.29785
\(563\) 8.68719e6 1.15507 0.577535 0.816366i \(-0.304015\pi\)
0.577535 + 0.816366i \(0.304015\pi\)
\(564\) −2.51698e6 −0.333182
\(565\) 0 0
\(566\) 1.09482e7 1.43649
\(567\) 4.34724e6 0.567879
\(568\) −7.07794e6 −0.920526
\(569\) 2.27007e6 0.293940 0.146970 0.989141i \(-0.453048\pi\)
0.146970 + 0.989141i \(0.453048\pi\)
\(570\) 0 0
\(571\) 1.43807e7 1.84582 0.922908 0.385021i \(-0.125806\pi\)
0.922908 + 0.385021i \(0.125806\pi\)
\(572\) 361061. 0.0461414
\(573\) 6.61372e6 0.841510
\(574\) 78408.0 0.00993300
\(575\) 0 0
\(576\) 1.98778e6 0.249638
\(577\) 5.63943e6 0.705173 0.352586 0.935779i \(-0.385302\pi\)
0.352586 + 0.935779i \(0.385302\pi\)
\(578\) −6.26148e6 −0.779574
\(579\) −1.56436e7 −1.93928
\(580\) 0 0
\(581\) −3.69191e6 −0.453744
\(582\) −1.33650e7 −1.63554
\(583\) 1.46765e6 0.178834
\(584\) 9.40896e6 1.14159
\(585\) 0 0
\(586\) −1.58383e7 −1.90531
\(587\) 1.28473e6 0.153893 0.0769464 0.997035i \(-0.475483\pi\)
0.0769464 + 0.997035i \(0.475483\pi\)
\(588\) −3.16239e6 −0.377200
\(589\) 1.48544e6 0.176428
\(590\) 0 0
\(591\) 1.18615e6 0.139692
\(592\) −1.76576e7 −2.07075
\(593\) −7.00943e6 −0.818552 −0.409276 0.912411i \(-0.634219\pi\)
−0.409276 + 0.912411i \(0.634219\pi\)
\(594\) −2.99376e6 −0.348138
\(595\) 0 0
\(596\) −1.00980e6 −0.116445
\(597\) 7.87632e6 0.904456
\(598\) −1.92805e6 −0.220478
\(599\) 8.80020e6 1.00213 0.501067 0.865409i \(-0.332941\pi\)
0.501067 + 0.865409i \(0.332941\pi\)
\(600\) 0 0
\(601\) −1.07670e7 −1.21593 −0.607965 0.793964i \(-0.708014\pi\)
−0.607965 + 0.793964i \(0.708014\pi\)
\(602\) −165486. −0.0186110
\(603\) −6.67694e6 −0.747798
\(604\) −1.87018e6 −0.208588
\(605\) 0 0
\(606\) −1.44009e7 −1.59298
\(607\) −1.51219e7 −1.66584 −0.832921 0.553391i \(-0.813333\pi\)
−0.832921 + 0.553391i \(0.813333\pi\)
\(608\) −910613. −0.0999021
\(609\) −8.23284e6 −0.899511
\(610\) 0 0
\(611\) −1.25849e6 −0.136379
\(612\) −1.26658e6 −0.136695
\(613\) 8.31622e6 0.893871 0.446936 0.894566i \(-0.352515\pi\)
0.446936 + 0.894566i \(0.352515\pi\)
\(614\) 6.15740e6 0.659139
\(615\) 0 0
\(616\) 1.99584e6 0.211921
\(617\) 1.21083e7 1.28047 0.640237 0.768178i \(-0.278836\pi\)
0.640237 + 0.768178i \(0.278836\pi\)
\(618\) −9.32240e6 −0.981875
\(619\) −9.73238e6 −1.02092 −0.510461 0.859901i \(-0.670525\pi\)
−0.510461 + 0.859901i \(0.670525\pi\)
\(620\) 0 0
\(621\) 4.35996e6 0.453684
\(622\) 3.76869e6 0.390584
\(623\) −596395. −0.0615622
\(624\) −3.00326e6 −0.308768
\(625\) 0 0
\(626\) 1.14254e7 1.16529
\(627\) 1.10324e6 0.112073
\(628\) 4.27972e6 0.433028
\(629\) −9.63706e6 −0.971220
\(630\) 0 0
\(631\) −8.60145e6 −0.859999 −0.430000 0.902829i \(-0.641486\pi\)
−0.430000 + 0.902829i \(0.641486\pi\)
\(632\) 6.88797e6 0.685959
\(633\) −5.00574e6 −0.496546
\(634\) 873224. 0.0862785
\(635\) 0 0
\(636\) 1.39075e6 0.136335
\(637\) −1.58119e6 −0.154396
\(638\) 1.15840e7 1.12670
\(639\) 8.16286e6 0.790842
\(640\) 0 0
\(641\) −6.42440e6 −0.617572 −0.308786 0.951132i \(-0.599923\pi\)
−0.308786 + 0.951132i \(0.599923\pi\)
\(642\) 1.28195e7 1.22753
\(643\) −3.64721e6 −0.347883 −0.173941 0.984756i \(-0.555650\pi\)
−0.173941 + 0.984756i \(0.555650\pi\)
\(644\) 1.74398e6 0.165702
\(645\) 0 0
\(646\) −1.00672e6 −0.0949134
\(647\) 3.78036e6 0.355036 0.177518 0.984118i \(-0.443193\pi\)
0.177518 + 0.984118i \(0.443193\pi\)
\(648\) 9.66053e6 0.903782
\(649\) 6.21432e6 0.579138
\(650\) 0 0
\(651\) −8.02138e6 −0.741816
\(652\) 1.73868e6 0.160177
\(653\) 1.66957e7 1.53223 0.766113 0.642706i \(-0.222188\pi\)
0.766113 + 0.642706i \(0.222188\pi\)
\(654\) 2.77332e6 0.253545
\(655\) 0 0
\(656\) 250272. 0.0227066
\(657\) −1.08512e7 −0.980761
\(658\) 4.17393e6 0.375821
\(659\) 1.22166e6 0.109581 0.0547907 0.998498i \(-0.482551\pi\)
0.0547907 + 0.998498i \(0.482551\pi\)
\(660\) 0 0
\(661\) 1.62789e7 1.44918 0.724589 0.689182i \(-0.242030\pi\)
0.724589 + 0.689182i \(0.242030\pi\)
\(662\) −1.04842e7 −0.929799
\(663\) −1.63910e6 −0.144818
\(664\) −8.20424e6 −0.722135
\(665\) 0 0
\(666\) 1.41776e7 1.23856
\(667\) −1.68704e7 −1.46829
\(668\) −217226. −0.0188352
\(669\) 5.74636e6 0.496395
\(670\) 0 0
\(671\) −1.43590e6 −0.123117
\(672\) 4.91731e6 0.420053
\(673\) −1.43928e7 −1.22492 −0.612459 0.790503i \(-0.709819\pi\)
−0.612459 + 0.790503i \(0.709819\pi\)
\(674\) 8.15126e6 0.691155
\(675\) 0 0
\(676\) −4.28444e6 −0.360602
\(677\) 2.62429e6 0.220059 0.110030 0.993928i \(-0.464905\pi\)
0.110030 + 0.993928i \(0.464905\pi\)
\(678\) −1.38623e7 −1.15814
\(679\) 6.04454e6 0.503140
\(680\) 0 0
\(681\) 2.31661e7 1.91419
\(682\) 1.12865e7 0.929177
\(683\) −1.03039e7 −0.845184 −0.422592 0.906320i \(-0.638880\pi\)
−0.422592 + 0.906320i \(0.638880\pi\)
\(684\) 403920. 0.0330107
\(685\) 0 0
\(686\) 1.18998e7 0.965449
\(687\) −1.08985e7 −0.880998
\(688\) −528219. −0.0425444
\(689\) 695376. 0.0558048
\(690\) 0 0
\(691\) 4.50285e6 0.358751 0.179375 0.983781i \(-0.442592\pi\)
0.179375 + 0.983781i \(0.442592\pi\)
\(692\) 5.91086e6 0.469230
\(693\) −2.30176e6 −0.182066
\(694\) −2.54865e7 −2.00868
\(695\) 0 0
\(696\) −1.82952e7 −1.43157
\(697\) 136592. 0.0106498
\(698\) 1.05764e7 0.821672
\(699\) −957264. −0.0741035
\(700\) 0 0
\(701\) −4.88090e6 −0.375150 −0.187575 0.982250i \(-0.560063\pi\)
−0.187575 + 0.982250i \(0.560063\pi\)
\(702\) −1.41845e6 −0.108636
\(703\) 3.07332e6 0.234541
\(704\) 3.27398e6 0.248969
\(705\) 0 0
\(706\) 1.95923e6 0.147936
\(707\) 6.51307e6 0.490046
\(708\) 5.88873e6 0.441508
\(709\) 9.96961e6 0.744839 0.372420 0.928064i \(-0.378528\pi\)
0.372420 + 0.928064i \(0.378528\pi\)
\(710\) 0 0
\(711\) −7.94376e6 −0.589321
\(712\) −1.32532e6 −0.0979765
\(713\) −1.64371e7 −1.21088
\(714\) 5.43629e6 0.399077
\(715\) 0 0
\(716\) −5.33304e6 −0.388770
\(717\) 2.00160e7 1.45405
\(718\) −7.32868e6 −0.530536
\(719\) 1.19167e7 0.859675 0.429838 0.902906i \(-0.358571\pi\)
0.429838 + 0.902906i \(0.358571\pi\)
\(720\) 0 0
\(721\) 4.21621e6 0.302054
\(722\) −1.61035e7 −1.14968
\(723\) 1.78143e7 1.26743
\(724\) 1.88282e6 0.133494
\(725\) 0 0
\(726\) −1.28762e7 −0.906664
\(727\) −1.38269e6 −0.0970264 −0.0485132 0.998823i \(-0.515448\pi\)
−0.0485132 + 0.998823i \(0.515448\pi\)
\(728\) 945636. 0.0661296
\(729\) −2.48079e6 −0.172890
\(730\) 0 0
\(731\) −288288. −0.0199541
\(732\) −1.36067e6 −0.0938585
\(733\) 6.09661e6 0.419110 0.209555 0.977797i \(-0.432798\pi\)
0.209555 + 0.977797i \(0.432798\pi\)
\(734\) −1.21893e7 −0.835099
\(735\) 0 0
\(736\) 1.00764e7 0.685660
\(737\) −1.09973e7 −0.745793
\(738\) −200948. −0.0135813
\(739\) −6.16946e6 −0.415562 −0.207781 0.978175i \(-0.566624\pi\)
−0.207781 + 0.978175i \(0.566624\pi\)
\(740\) 0 0
\(741\) 522720. 0.0349723
\(742\) −2.30630e6 −0.153782
\(743\) 1.57574e7 1.04716 0.523578 0.851978i \(-0.324597\pi\)
0.523578 + 0.851978i \(0.324597\pi\)
\(744\) −1.78253e7 −1.18060
\(745\) 0 0
\(746\) −1.94586e7 −1.28016
\(747\) 9.46179e6 0.620400
\(748\) −2.08613e6 −0.136329
\(749\) −5.79784e6 −0.377626
\(750\) 0 0
\(751\) −1.51816e7 −0.982243 −0.491122 0.871091i \(-0.663413\pi\)
−0.491122 + 0.871091i \(0.663413\pi\)
\(752\) 1.33229e7 0.859118
\(753\) 1.11091e7 0.713987
\(754\) 5.48856e6 0.351585
\(755\) 0 0
\(756\) 1.28304e6 0.0816461
\(757\) −652274. −0.0413705 −0.0206852 0.999786i \(-0.506585\pi\)
−0.0206852 + 0.999786i \(0.506585\pi\)
\(758\) −3.37859e7 −2.13581
\(759\) −1.22079e7 −0.769194
\(760\) 0 0
\(761\) 4.51420e6 0.282566 0.141283 0.989969i \(-0.454877\pi\)
0.141283 + 0.989969i \(0.454877\pi\)
\(762\) −1.15131e7 −0.718300
\(763\) −1.25428e6 −0.0779980
\(764\) 3.98822e6 0.247199
\(765\) 0 0
\(766\) −2.10596e7 −1.29681
\(767\) 2.94437e6 0.180719
\(768\) 2.05862e7 1.25943
\(769\) 1.20799e7 0.736625 0.368312 0.929702i \(-0.379936\pi\)
0.368312 + 0.929702i \(0.379936\pi\)
\(770\) 0 0
\(771\) −1.56795e7 −0.949939
\(772\) −9.43344e6 −0.569674
\(773\) 1.04245e7 0.627492 0.313746 0.949507i \(-0.398416\pi\)
0.313746 + 0.949507i \(0.398416\pi\)
\(774\) 424116. 0.0254467
\(775\) 0 0
\(776\) 1.34323e7 0.800750
\(777\) −1.65959e7 −0.986163
\(778\) −1.19393e7 −0.707177
\(779\) −43560.0 −0.00257184
\(780\) 0 0
\(781\) 1.34447e7 0.788721
\(782\) 1.11398e7 0.651421
\(783\) −1.24115e7 −0.723467
\(784\) 1.67392e7 0.972620
\(785\) 0 0
\(786\) 2.54565e7 1.46974
\(787\) 3.45366e7 1.98766 0.993830 0.110913i \(-0.0353776\pi\)
0.993830 + 0.110913i \(0.0353776\pi\)
\(788\) 715277. 0.0410354
\(789\) 3.24711e7 1.85697
\(790\) 0 0
\(791\) 6.26947e6 0.356279
\(792\) −5.11503e6 −0.289758
\(793\) −680333. −0.0384183
\(794\) −3.25298e7 −1.83118
\(795\) 0 0
\(796\) 4.74960e6 0.265689
\(797\) −2.09287e7 −1.16707 −0.583533 0.812089i \(-0.698330\pi\)
−0.583533 + 0.812089i \(0.698330\pi\)
\(798\) −1.73367e6 −0.0963736
\(799\) 7.27126e6 0.402942
\(800\) 0 0
\(801\) 1.52847e6 0.0841735
\(802\) −4.26384e6 −0.234080
\(803\) −1.78725e7 −0.978131
\(804\) −1.04211e7 −0.568558
\(805\) 0 0
\(806\) 5.34758e6 0.289948
\(807\) 3.45533e7 1.86770
\(808\) 1.44735e7 0.779910
\(809\) −2.48797e7 −1.33651 −0.668257 0.743930i \(-0.732959\pi\)
−0.668257 + 0.743930i \(0.732959\pi\)
\(810\) 0 0
\(811\) −3.95415e6 −0.211106 −0.105553 0.994414i \(-0.533661\pi\)
−0.105553 + 0.994414i \(0.533661\pi\)
\(812\) −4.96459e6 −0.264237
\(813\) −3.42285e7 −1.81619
\(814\) 2.33513e7 1.23524
\(815\) 0 0
\(816\) 1.73522e7 0.912282
\(817\) 91936.8 0.00481875
\(818\) 1.36453e7 0.713018
\(819\) −1.09058e6 −0.0568132
\(820\) 0 0
\(821\) −3.43550e6 −0.177882 −0.0889410 0.996037i \(-0.528348\pi\)
−0.0889410 + 0.996037i \(0.528348\pi\)
\(822\) −1.89512e7 −0.978269
\(823\) 3.94833e6 0.203195 0.101598 0.994826i \(-0.467605\pi\)
0.101598 + 0.994826i \(0.467605\pi\)
\(824\) 9.36936e6 0.480720
\(825\) 0 0
\(826\) −9.76536e6 −0.498010
\(827\) −3.38176e7 −1.71941 −0.859705 0.510791i \(-0.829353\pi\)
−0.859705 + 0.510791i \(0.829353\pi\)
\(828\) −4.46956e6 −0.226563
\(829\) −1.52015e7 −0.768244 −0.384122 0.923282i \(-0.625496\pi\)
−0.384122 + 0.923282i \(0.625496\pi\)
\(830\) 0 0
\(831\) 2.53210e7 1.27198
\(832\) 1.55123e6 0.0776903
\(833\) 9.13579e6 0.456177
\(834\) 4.20209e7 2.09194
\(835\) 0 0
\(836\) 665280. 0.0329222
\(837\) −1.20927e7 −0.596635
\(838\) 1.94846e7 0.958478
\(839\) −2.89012e7 −1.41746 −0.708729 0.705481i \(-0.750731\pi\)
−0.708729 + 0.705481i \(0.750731\pi\)
\(840\) 0 0
\(841\) 2.75138e7 1.34140
\(842\) 1.80272e7 0.876290
\(843\) 2.91532e7 1.41292
\(844\) −3.01858e6 −0.145863
\(845\) 0 0
\(846\) −1.06971e7 −0.513857
\(847\) 5.82348e6 0.278917
\(848\) −7.36153e6 −0.351543
\(849\) 3.28446e7 1.56385
\(850\) 0 0
\(851\) −3.40077e7 −1.60973
\(852\) 1.27403e7 0.601285
\(853\) 2.02107e7 0.951062 0.475531 0.879699i \(-0.342256\pi\)
0.475531 + 0.879699i \(0.342256\pi\)
\(854\) 2.25641e6 0.105870
\(855\) 0 0
\(856\) −1.28841e7 −0.600992
\(857\) 1.70522e7 0.793101 0.396550 0.918013i \(-0.370207\pi\)
0.396550 + 0.918013i \(0.370207\pi\)
\(858\) 3.97167e6 0.184185
\(859\) −1.95505e7 −0.904015 −0.452008 0.892014i \(-0.649292\pi\)
−0.452008 + 0.892014i \(0.649292\pi\)
\(860\) 0 0
\(861\) 235224. 0.0108137
\(862\) 3.31288e7 1.51858
\(863\) −2.70896e7 −1.23816 −0.619078 0.785330i \(-0.712493\pi\)
−0.619078 + 0.785330i \(0.712493\pi\)
\(864\) 7.41312e6 0.337844
\(865\) 0 0
\(866\) 1.38093e7 0.625716
\(867\) −1.87844e7 −0.848692
\(868\) −4.83707e6 −0.217913
\(869\) −1.30838e7 −0.587741
\(870\) 0 0
\(871\) −5.21057e6 −0.232723
\(872\) −2.78729e6 −0.124134
\(873\) −1.54912e7 −0.687940
\(874\) −3.55256e6 −0.157312
\(875\) 0 0
\(876\) −1.69361e7 −0.745682
\(877\) 1.98285e6 0.0870545 0.0435272 0.999052i \(-0.486140\pi\)
0.0435272 + 0.999052i \(0.486140\pi\)
\(878\) 3.12031e7 1.36603
\(879\) −4.75150e7 −2.07424
\(880\) 0 0
\(881\) −4.22840e7 −1.83542 −0.917712 0.397247i \(-0.869966\pi\)
−0.917712 + 0.397247i \(0.869966\pi\)
\(882\) −1.34402e7 −0.581745
\(883\) −134502. −0.00580535 −0.00290267 0.999996i \(-0.500924\pi\)
−0.00290267 + 0.999996i \(0.500924\pi\)
\(884\) −988416. −0.0425411
\(885\) 0 0
\(886\) 3.78164e7 1.61844
\(887\) 3.87668e6 0.165444 0.0827219 0.996573i \(-0.473639\pi\)
0.0827219 + 0.996573i \(0.473639\pi\)
\(888\) −3.68798e7 −1.56948
\(889\) 5.20700e6 0.220970
\(890\) 0 0
\(891\) −1.83504e7 −0.774374
\(892\) 3.46518e6 0.145819
\(893\) −2.31885e6 −0.0973070
\(894\) −1.11078e7 −0.464819
\(895\) 0 0
\(896\) −1.30522e7 −0.543141
\(897\) −5.78414e6 −0.240026
\(898\) −4.11477e7 −1.70277
\(899\) 4.67914e7 1.93093
\(900\) 0 0
\(901\) −4.01773e6 −0.164880
\(902\) −330973. −0.0135449
\(903\) −496459. −0.0202611
\(904\) 1.39322e7 0.567019
\(905\) 0 0
\(906\) −2.05719e7 −0.832635
\(907\) −2.87363e7 −1.15988 −0.579939 0.814660i \(-0.696924\pi\)
−0.579939 + 0.814660i \(0.696924\pi\)
\(908\) 1.39697e7 0.562306
\(909\) −1.66920e7 −0.670037
\(910\) 0 0
\(911\) 1.87675e6 0.0749223 0.0374611 0.999298i \(-0.488073\pi\)
0.0374611 + 0.999298i \(0.488073\pi\)
\(912\) −5.53372e6 −0.220308
\(913\) 1.55841e7 0.618736
\(914\) −1.42861e7 −0.565650
\(915\) 0 0
\(916\) −6.57204e6 −0.258798
\(917\) −1.15131e7 −0.452137
\(918\) 8.19551e6 0.320974
\(919\) 6.76852e6 0.264366 0.132183 0.991225i \(-0.457801\pi\)
0.132183 + 0.991225i \(0.457801\pi\)
\(920\) 0 0
\(921\) 1.84722e7 0.717579
\(922\) −2.55466e7 −0.989706
\(923\) 6.37015e6 0.246119
\(924\) −3.59251e6 −0.138426
\(925\) 0 0
\(926\) 1.38113e7 0.529306
\(927\) −1.08055e7 −0.412996
\(928\) −2.86843e7 −1.09339
\(929\) −1.15356e7 −0.438530 −0.219265 0.975665i \(-0.570366\pi\)
−0.219265 + 0.975665i \(0.570366\pi\)
\(930\) 0 0
\(931\) −2.91346e6 −0.110163
\(932\) −577252. −0.0217684
\(933\) 1.13061e7 0.425214
\(934\) 8.67772e6 0.325491
\(935\) 0 0
\(936\) −2.42352e6 −0.0904184
\(937\) 3.92632e7 1.46096 0.730478 0.682936i \(-0.239297\pi\)
0.730478 + 0.682936i \(0.239297\pi\)
\(938\) 1.72815e7 0.641319
\(939\) 3.42762e7 1.26861
\(940\) 0 0
\(941\) 2.94919e7 1.08575 0.542874 0.839814i \(-0.317336\pi\)
0.542874 + 0.839814i \(0.317336\pi\)
\(942\) 4.70769e7 1.72855
\(943\) 482012. 0.0176514
\(944\) −3.11702e7 −1.13844
\(945\) 0 0
\(946\) 698544. 0.0253785
\(947\) 2.09628e7 0.759581 0.379791 0.925072i \(-0.375996\pi\)
0.379791 + 0.925072i \(0.375996\pi\)
\(948\) −1.23983e7 −0.448067
\(949\) −8.46806e6 −0.305224
\(950\) 0 0
\(951\) 2.61967e6 0.0939281
\(952\) −5.46368e6 −0.195386
\(953\) 1.64122e7 0.585375 0.292687 0.956208i \(-0.405451\pi\)
0.292687 + 0.956208i \(0.405451\pi\)
\(954\) 5.91070e6 0.210265
\(955\) 0 0
\(956\) 1.20701e7 0.427135
\(957\) 3.47521e7 1.22660
\(958\) 4.48652e7 1.57941
\(959\) 8.57102e6 0.300944
\(960\) 0 0
\(961\) 1.69604e7 0.592416
\(962\) 1.10639e7 0.385454
\(963\) 1.48590e7 0.516325
\(964\) 1.07424e7 0.372314
\(965\) 0 0
\(966\) 1.91838e7 0.661443
\(967\) −4.71911e7 −1.62291 −0.811454 0.584416i \(-0.801324\pi\)
−0.811454 + 0.584416i \(0.801324\pi\)
\(968\) 1.29411e7 0.443897
\(969\) −3.02016e6 −0.103329
\(970\) 0 0
\(971\) 3.84771e7 1.30965 0.654823 0.755783i \(-0.272743\pi\)
0.654823 + 0.755783i \(0.272743\pi\)
\(972\) −1.21665e7 −0.413046
\(973\) −1.90047e7 −0.643544
\(974\) 4.42566e7 1.49479
\(975\) 0 0
\(976\) 7.20227e6 0.242016
\(977\) 2.70184e7 0.905572 0.452786 0.891619i \(-0.350430\pi\)
0.452786 + 0.891619i \(0.350430\pi\)
\(978\) 1.91255e7 0.639389
\(979\) 2.51748e6 0.0839478
\(980\) 0 0
\(981\) 3.21453e6 0.106646
\(982\) −4.56086e7 −1.50927
\(983\) −2.88475e7 −0.952192 −0.476096 0.879393i \(-0.657949\pi\)
−0.476096 + 0.879393i \(0.657949\pi\)
\(984\) 522720. 0.0172100
\(985\) 0 0
\(986\) −3.17117e7 −1.03879
\(987\) 1.25218e7 0.409142
\(988\) 315212. 0.0102733
\(989\) −1.01732e6 −0.0330726
\(990\) 0 0
\(991\) −5.21596e7 −1.68714 −0.843569 0.537021i \(-0.819550\pi\)
−0.843569 + 0.537021i \(0.819550\pi\)
\(992\) −2.79475e7 −0.901704
\(993\) −3.14525e7 −1.01224
\(994\) −2.11274e7 −0.678235
\(995\) 0 0
\(996\) 1.47676e7 0.471696
\(997\) −9.78148e6 −0.311650 −0.155825 0.987785i \(-0.549804\pi\)
−0.155825 + 0.987785i \(0.549804\pi\)
\(998\) −4.60354e7 −1.46307
\(999\) −2.50193e7 −0.793161
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 25.6.a.c.1.2 2
3.2 odd 2 225.6.a.n.1.1 2
4.3 odd 2 400.6.a.t.1.1 2
5.2 odd 4 5.6.b.a.4.2 yes 2
5.3 odd 4 5.6.b.a.4.1 2
5.4 even 2 inner 25.6.a.c.1.1 2
15.2 even 4 45.6.b.b.19.1 2
15.8 even 4 45.6.b.b.19.2 2
15.14 odd 2 225.6.a.n.1.2 2
20.3 even 4 80.6.c.a.49.1 2
20.7 even 4 80.6.c.a.49.2 2
20.19 odd 2 400.6.a.t.1.2 2
35.13 even 4 245.6.b.a.99.1 2
35.27 even 4 245.6.b.a.99.2 2
40.3 even 4 320.6.c.g.129.2 2
40.13 odd 4 320.6.c.f.129.1 2
40.27 even 4 320.6.c.g.129.1 2
40.37 odd 4 320.6.c.f.129.2 2
60.23 odd 4 720.6.f.f.289.2 2
60.47 odd 4 720.6.f.f.289.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5.6.b.a.4.1 2 5.3 odd 4
5.6.b.a.4.2 yes 2 5.2 odd 4
25.6.a.c.1.1 2 5.4 even 2 inner
25.6.a.c.1.2 2 1.1 even 1 trivial
45.6.b.b.19.1 2 15.2 even 4
45.6.b.b.19.2 2 15.8 even 4
80.6.c.a.49.1 2 20.3 even 4
80.6.c.a.49.2 2 20.7 even 4
225.6.a.n.1.1 2 3.2 odd 2
225.6.a.n.1.2 2 15.14 odd 2
245.6.b.a.99.1 2 35.13 even 4
245.6.b.a.99.2 2 35.27 even 4
320.6.c.f.129.1 2 40.13 odd 4
320.6.c.f.129.2 2 40.37 odd 4
320.6.c.g.129.1 2 40.27 even 4
320.6.c.g.129.2 2 40.3 even 4
400.6.a.t.1.1 2 4.3 odd 2
400.6.a.t.1.2 2 20.19 odd 2
720.6.f.f.289.1 2 60.47 odd 4
720.6.f.f.289.2 2 60.23 odd 4