Properties

Label 25.4.e
Level $25$
Weight $4$
Character orbit 25.e
Rep. character $\chi_{25}(4,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $24$
Newform subspaces $1$
Sturm bound $10$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 25.e (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(10\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(25, [\chi])\).

Total New Old
Modular forms 32 32 0
Cusp forms 24 24 0
Eisenstein series 8 8 0

Trace form

\( 24 q - 5 q^{2} - 5 q^{3} + 13 q^{4} + 15 q^{5} - 7 q^{6} - 110 q^{8} + 47 q^{9} - 5 q^{10} + 83 q^{11} - 165 q^{12} - 5 q^{13} + 31 q^{14} - 225 q^{15} + 89 q^{16} - 165 q^{17} - 115 q^{19} + 395 q^{20}+ \cdots + 6024 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(25, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
25.4.e.a 25.e 25.e $24$ $1.475$ None 25.4.e.a \(-5\) \(-5\) \(15\) \(0\) $\mathrm{SU}(2)[C_{10}]$