Properties

Label 25.4.d
Level $25$
Weight $4$
Character orbit 25.d
Rep. character $\chi_{25}(6,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $28$
Newform subspaces $1$
Sturm bound $10$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 25.d (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 1 \)
Sturm bound: \(10\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(25, [\chi])\).

Total New Old
Modular forms 36 36 0
Cusp forms 28 28 0
Eisenstein series 8 8 0

Trace form

\( 28 q - q^{2} - 7 q^{3} - 31 q^{4} - 20 q^{5} + q^{6} - 16 q^{7} + 100 q^{8} - 34 q^{9} - 25 q^{10} - 89 q^{11} + 139 q^{12} + 33 q^{13} - 17 q^{14} + 225 q^{15} - 207 q^{16} - 191 q^{17} - 552 q^{18}+ \cdots + 6572 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(25, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
25.4.d.a 25.d 25.d $28$ $1.475$ None 25.4.d.a \(-1\) \(-7\) \(-20\) \(-16\) $\mathrm{SU}(2)[C_{5}]$