Properties

Label 25.4.b.b.24.2
Level $25$
Weight $4$
Character 25.24
Analytic conductor $1.475$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [25,4,Mod(24,25)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(25, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("25.24");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 25.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47504775014\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 24.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 25.24
Dual form 25.4.b.b.24.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -7.00000i q^{3} +7.00000 q^{4} +7.00000 q^{6} +6.00000i q^{7} +15.0000i q^{8} -22.0000 q^{9} +O(q^{10})\) \(q+1.00000i q^{2} -7.00000i q^{3} +7.00000 q^{4} +7.00000 q^{6} +6.00000i q^{7} +15.0000i q^{8} -22.0000 q^{9} -43.0000 q^{11} -49.0000i q^{12} +28.0000i q^{13} -6.00000 q^{14} +41.0000 q^{16} +91.0000i q^{17} -22.0000i q^{18} +35.0000 q^{19} +42.0000 q^{21} -43.0000i q^{22} -162.000i q^{23} +105.000 q^{24} -28.0000 q^{26} -35.0000i q^{27} +42.0000i q^{28} -160.000 q^{29} +42.0000 q^{31} +161.000i q^{32} +301.000i q^{33} -91.0000 q^{34} -154.000 q^{36} -314.000i q^{37} +35.0000i q^{38} +196.000 q^{39} -203.000 q^{41} +42.0000i q^{42} -92.0000i q^{43} -301.000 q^{44} +162.000 q^{46} +196.000i q^{47} -287.000i q^{48} +307.000 q^{49} +637.000 q^{51} +196.000i q^{52} -82.0000i q^{53} +35.0000 q^{54} -90.0000 q^{56} -245.000i q^{57} -160.000i q^{58} +280.000 q^{59} -518.000 q^{61} +42.0000i q^{62} -132.000i q^{63} +167.000 q^{64} -301.000 q^{66} +141.000i q^{67} +637.000i q^{68} -1134.00 q^{69} +412.000 q^{71} -330.000i q^{72} +763.000i q^{73} +314.000 q^{74} +245.000 q^{76} -258.000i q^{77} +196.000i q^{78} -510.000 q^{79} -839.000 q^{81} -203.000i q^{82} -777.000i q^{83} +294.000 q^{84} +92.0000 q^{86} +1120.00i q^{87} -645.000i q^{88} +945.000 q^{89} -168.000 q^{91} -1134.00i q^{92} -294.000i q^{93} -196.000 q^{94} +1127.00 q^{96} +1246.00i q^{97} +307.000i q^{98} +946.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 14 q^{4} + 14 q^{6} - 44 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 14 q^{4} + 14 q^{6} - 44 q^{9} - 86 q^{11} - 12 q^{14} + 82 q^{16} + 70 q^{19} + 84 q^{21} + 210 q^{24} - 56 q^{26} - 320 q^{29} + 84 q^{31} - 182 q^{34} - 308 q^{36} + 392 q^{39} - 406 q^{41} - 602 q^{44} + 324 q^{46} + 614 q^{49} + 1274 q^{51} + 70 q^{54} - 180 q^{56} + 560 q^{59} - 1036 q^{61} + 334 q^{64} - 602 q^{66} - 2268 q^{69} + 824 q^{71} + 628 q^{74} + 490 q^{76} - 1020 q^{79} - 1678 q^{81} + 588 q^{84} + 184 q^{86} + 1890 q^{89} - 336 q^{91} - 392 q^{94} + 2254 q^{96} + 1892 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/25\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.353553i 0.984251 + 0.176777i \(0.0565670\pi\)
−0.984251 + 0.176777i \(0.943433\pi\)
\(3\) − 7.00000i − 1.34715i −0.739119 0.673575i \(-0.764758\pi\)
0.739119 0.673575i \(-0.235242\pi\)
\(4\) 7.00000 0.875000
\(5\) 0 0
\(6\) 7.00000 0.476290
\(7\) 6.00000i 0.323970i 0.986793 + 0.161985i \(0.0517895\pi\)
−0.986793 + 0.161985i \(0.948210\pi\)
\(8\) 15.0000i 0.662913i
\(9\) −22.0000 −0.814815
\(10\) 0 0
\(11\) −43.0000 −1.17864 −0.589318 0.807901i \(-0.700603\pi\)
−0.589318 + 0.807901i \(0.700603\pi\)
\(12\) − 49.0000i − 1.17876i
\(13\) 28.0000i 0.597369i 0.954352 + 0.298685i \(0.0965479\pi\)
−0.954352 + 0.298685i \(0.903452\pi\)
\(14\) −6.00000 −0.114541
\(15\) 0 0
\(16\) 41.0000 0.640625
\(17\) 91.0000i 1.29828i 0.760669 + 0.649139i \(0.224871\pi\)
−0.760669 + 0.649139i \(0.775129\pi\)
\(18\) − 22.0000i − 0.288081i
\(19\) 35.0000 0.422608 0.211304 0.977420i \(-0.432229\pi\)
0.211304 + 0.977420i \(0.432229\pi\)
\(20\) 0 0
\(21\) 42.0000 0.436436
\(22\) − 43.0000i − 0.416710i
\(23\) − 162.000i − 1.46867i −0.678789 0.734333i \(-0.737495\pi\)
0.678789 0.734333i \(-0.262505\pi\)
\(24\) 105.000 0.893043
\(25\) 0 0
\(26\) −28.0000 −0.211202
\(27\) − 35.0000i − 0.249472i
\(28\) 42.0000i 0.283473i
\(29\) −160.000 −1.02453 −0.512263 0.858829i \(-0.671193\pi\)
−0.512263 + 0.858829i \(0.671193\pi\)
\(30\) 0 0
\(31\) 42.0000 0.243336 0.121668 0.992571i \(-0.461176\pi\)
0.121668 + 0.992571i \(0.461176\pi\)
\(32\) 161.000i 0.889408i
\(33\) 301.000i 1.58780i
\(34\) −91.0000 −0.459011
\(35\) 0 0
\(36\) −154.000 −0.712963
\(37\) − 314.000i − 1.39517i −0.716502 0.697585i \(-0.754258\pi\)
0.716502 0.697585i \(-0.245742\pi\)
\(38\) 35.0000i 0.149414i
\(39\) 196.000 0.804747
\(40\) 0 0
\(41\) −203.000 −0.773251 −0.386625 0.922237i \(-0.626359\pi\)
−0.386625 + 0.922237i \(0.626359\pi\)
\(42\) 42.0000i 0.154303i
\(43\) − 92.0000i − 0.326276i −0.986603 0.163138i \(-0.947838\pi\)
0.986603 0.163138i \(-0.0521616\pi\)
\(44\) −301.000 −1.03131
\(45\) 0 0
\(46\) 162.000 0.519252
\(47\) 196.000i 0.608288i 0.952626 + 0.304144i \(0.0983704\pi\)
−0.952626 + 0.304144i \(0.901630\pi\)
\(48\) − 287.000i − 0.863018i
\(49\) 307.000 0.895044
\(50\) 0 0
\(51\) 637.000 1.74898
\(52\) 196.000i 0.522698i
\(53\) − 82.0000i − 0.212520i −0.994338 0.106260i \(-0.966112\pi\)
0.994338 0.106260i \(-0.0338876\pi\)
\(54\) 35.0000 0.0882018
\(55\) 0 0
\(56\) −90.0000 −0.214763
\(57\) − 245.000i − 0.569317i
\(58\) − 160.000i − 0.362225i
\(59\) 280.000 0.617846 0.308923 0.951087i \(-0.400032\pi\)
0.308923 + 0.951087i \(0.400032\pi\)
\(60\) 0 0
\(61\) −518.000 −1.08726 −0.543632 0.839324i \(-0.682951\pi\)
−0.543632 + 0.839324i \(0.682951\pi\)
\(62\) 42.0000i 0.0860323i
\(63\) − 132.000i − 0.263975i
\(64\) 167.000 0.326172
\(65\) 0 0
\(66\) −301.000 −0.561372
\(67\) 141.000i 0.257103i 0.991703 + 0.128551i \(0.0410327\pi\)
−0.991703 + 0.128551i \(0.958967\pi\)
\(68\) 637.000i 1.13599i
\(69\) −1134.00 −1.97852
\(70\) 0 0
\(71\) 412.000 0.688668 0.344334 0.938847i \(-0.388105\pi\)
0.344334 + 0.938847i \(0.388105\pi\)
\(72\) − 330.000i − 0.540151i
\(73\) 763.000i 1.22332i 0.791121 + 0.611660i \(0.209498\pi\)
−0.791121 + 0.611660i \(0.790502\pi\)
\(74\) 314.000 0.493267
\(75\) 0 0
\(76\) 245.000 0.369782
\(77\) − 258.000i − 0.381842i
\(78\) 196.000i 0.284521i
\(79\) −510.000 −0.726323 −0.363161 0.931726i \(-0.618303\pi\)
−0.363161 + 0.931726i \(0.618303\pi\)
\(80\) 0 0
\(81\) −839.000 −1.15089
\(82\) − 203.000i − 0.273385i
\(83\) − 777.000i − 1.02755i −0.857924 0.513776i \(-0.828246\pi\)
0.857924 0.513776i \(-0.171754\pi\)
\(84\) 294.000 0.381881
\(85\) 0 0
\(86\) 92.0000 0.115356
\(87\) 1120.00i 1.38019i
\(88\) − 645.000i − 0.781332i
\(89\) 945.000 1.12550 0.562752 0.826626i \(-0.309743\pi\)
0.562752 + 0.826626i \(0.309743\pi\)
\(90\) 0 0
\(91\) −168.000 −0.193530
\(92\) − 1134.00i − 1.28508i
\(93\) − 294.000i − 0.327811i
\(94\) −196.000 −0.215062
\(95\) 0 0
\(96\) 1127.00 1.19817
\(97\) 1246.00i 1.30425i 0.758112 + 0.652124i \(0.226122\pi\)
−0.758112 + 0.652124i \(0.773878\pi\)
\(98\) 307.000i 0.316446i
\(99\) 946.000 0.960369
\(100\) 0 0
\(101\) 1302.00 1.28271 0.641356 0.767244i \(-0.278372\pi\)
0.641356 + 0.767244i \(0.278372\pi\)
\(102\) 637.000i 0.618357i
\(103\) − 532.000i − 0.508927i −0.967082 0.254464i \(-0.918101\pi\)
0.967082 0.254464i \(-0.0818989\pi\)
\(104\) −420.000 −0.396004
\(105\) 0 0
\(106\) 82.0000 0.0751372
\(107\) − 1269.00i − 1.14653i −0.819370 0.573266i \(-0.805676\pi\)
0.819370 0.573266i \(-0.194324\pi\)
\(108\) − 245.000i − 0.218288i
\(109\) −1070.00 −0.940251 −0.470126 0.882599i \(-0.655791\pi\)
−0.470126 + 0.882599i \(0.655791\pi\)
\(110\) 0 0
\(111\) −2198.00 −1.87950
\(112\) 246.000i 0.207543i
\(113\) 503.000i 0.418746i 0.977836 + 0.209373i \(0.0671422\pi\)
−0.977836 + 0.209373i \(0.932858\pi\)
\(114\) 245.000 0.201284
\(115\) 0 0
\(116\) −1120.00 −0.896460
\(117\) − 616.000i − 0.486745i
\(118\) 280.000i 0.218441i
\(119\) −546.000 −0.420603
\(120\) 0 0
\(121\) 518.000 0.389181
\(122\) − 518.000i − 0.384406i
\(123\) 1421.00i 1.04169i
\(124\) 294.000 0.212919
\(125\) 0 0
\(126\) 132.000 0.0933293
\(127\) − 874.000i − 0.610669i −0.952245 0.305334i \(-0.901232\pi\)
0.952245 0.305334i \(-0.0987683\pi\)
\(128\) 1455.00i 1.00473i
\(129\) −644.000 −0.439543
\(130\) 0 0
\(131\) 1092.00 0.728309 0.364155 0.931339i \(-0.381358\pi\)
0.364155 + 0.931339i \(0.381358\pi\)
\(132\) 2107.00i 1.38932i
\(133\) 210.000i 0.136912i
\(134\) −141.000 −0.0908996
\(135\) 0 0
\(136\) −1365.00 −0.860645
\(137\) 411.000i 0.256307i 0.991754 + 0.128154i \(0.0409051\pi\)
−0.991754 + 0.128154i \(0.959095\pi\)
\(138\) − 1134.00i − 0.699511i
\(139\) 595.000 0.363074 0.181537 0.983384i \(-0.441893\pi\)
0.181537 + 0.983384i \(0.441893\pi\)
\(140\) 0 0
\(141\) 1372.00 0.819456
\(142\) 412.000i 0.243481i
\(143\) − 1204.00i − 0.704081i
\(144\) −902.000 −0.521991
\(145\) 0 0
\(146\) −763.000 −0.432509
\(147\) − 2149.00i − 1.20576i
\(148\) − 2198.00i − 1.22077i
\(149\) 3200.00 1.75942 0.879712 0.475507i \(-0.157735\pi\)
0.879712 + 0.475507i \(0.157735\pi\)
\(150\) 0 0
\(151\) 202.000 0.108864 0.0544322 0.998517i \(-0.482665\pi\)
0.0544322 + 0.998517i \(0.482665\pi\)
\(152\) 525.000i 0.280152i
\(153\) − 2002.00i − 1.05786i
\(154\) 258.000 0.135002
\(155\) 0 0
\(156\) 1372.00 0.704153
\(157\) 406.000i 0.206384i 0.994661 + 0.103192i \(0.0329057\pi\)
−0.994661 + 0.103192i \(0.967094\pi\)
\(158\) − 510.000i − 0.256794i
\(159\) −574.000 −0.286297
\(160\) 0 0
\(161\) 972.000 0.475803
\(162\) − 839.000i − 0.406902i
\(163\) 3803.00i 1.82745i 0.406336 + 0.913724i \(0.366806\pi\)
−0.406336 + 0.913724i \(0.633194\pi\)
\(164\) −1421.00 −0.676594
\(165\) 0 0
\(166\) 777.000 0.363295
\(167\) 4116.00i 1.90722i 0.301046 + 0.953610i \(0.402664\pi\)
−0.301046 + 0.953610i \(0.597336\pi\)
\(168\) 630.000i 0.289319i
\(169\) 1413.00 0.643150
\(170\) 0 0
\(171\) −770.000 −0.344347
\(172\) − 644.000i − 0.285492i
\(173\) − 1512.00i − 0.664481i −0.943195 0.332241i \(-0.892195\pi\)
0.943195 0.332241i \(-0.107805\pi\)
\(174\) −1120.00 −0.487971
\(175\) 0 0
\(176\) −1763.00 −0.755063
\(177\) − 1960.00i − 0.832331i
\(178\) 945.000i 0.397926i
\(179\) −2585.00 −1.07940 −0.539698 0.841859i \(-0.681462\pi\)
−0.539698 + 0.841859i \(0.681462\pi\)
\(180\) 0 0
\(181\) −2758.00 −1.13260 −0.566300 0.824199i \(-0.691626\pi\)
−0.566300 + 0.824199i \(0.691626\pi\)
\(182\) − 168.000i − 0.0684230i
\(183\) 3626.00i 1.46471i
\(184\) 2430.00 0.973598
\(185\) 0 0
\(186\) 294.000 0.115899
\(187\) − 3913.00i − 1.53020i
\(188\) 1372.00i 0.532252i
\(189\) 210.000 0.0808214
\(190\) 0 0
\(191\) −2378.00 −0.900869 −0.450435 0.892809i \(-0.648731\pi\)
−0.450435 + 0.892809i \(0.648731\pi\)
\(192\) − 1169.00i − 0.439403i
\(193\) − 3067.00i − 1.14387i −0.820298 0.571937i \(-0.806192\pi\)
0.820298 0.571937i \(-0.193808\pi\)
\(194\) −1246.00 −0.461122
\(195\) 0 0
\(196\) 2149.00 0.783163
\(197\) 2346.00i 0.848455i 0.905556 + 0.424227i \(0.139454\pi\)
−0.905556 + 0.424227i \(0.860546\pi\)
\(198\) 946.000i 0.339542i
\(199\) −4900.00 −1.74549 −0.872743 0.488180i \(-0.837661\pi\)
−0.872743 + 0.488180i \(0.837661\pi\)
\(200\) 0 0
\(201\) 987.000 0.346356
\(202\) 1302.00i 0.453507i
\(203\) − 960.000i − 0.331915i
\(204\) 4459.00 1.53036
\(205\) 0 0
\(206\) 532.000 0.179933
\(207\) 3564.00i 1.19669i
\(208\) 1148.00i 0.382690i
\(209\) −1505.00 −0.498101
\(210\) 0 0
\(211\) 4307.00 1.40524 0.702621 0.711564i \(-0.252013\pi\)
0.702621 + 0.711564i \(0.252013\pi\)
\(212\) − 574.000i − 0.185955i
\(213\) − 2884.00i − 0.927739i
\(214\) 1269.00 0.405360
\(215\) 0 0
\(216\) 525.000 0.165378
\(217\) 252.000i 0.0788335i
\(218\) − 1070.00i − 0.332429i
\(219\) 5341.00 1.64800
\(220\) 0 0
\(221\) −2548.00 −0.775552
\(222\) − 2198.00i − 0.664505i
\(223\) − 2212.00i − 0.664244i −0.943236 0.332122i \(-0.892235\pi\)
0.943236 0.332122i \(-0.107765\pi\)
\(224\) −966.000 −0.288141
\(225\) 0 0
\(226\) −503.000 −0.148049
\(227\) 476.000i 0.139177i 0.997576 + 0.0695886i \(0.0221687\pi\)
−0.997576 + 0.0695886i \(0.977831\pi\)
\(228\) − 1715.00i − 0.498152i
\(229\) 2940.00 0.848387 0.424194 0.905572i \(-0.360558\pi\)
0.424194 + 0.905572i \(0.360558\pi\)
\(230\) 0 0
\(231\) −1806.00 −0.514399
\(232\) − 2400.00i − 0.679171i
\(233\) − 1002.00i − 0.281730i −0.990029 0.140865i \(-0.955012\pi\)
0.990029 0.140865i \(-0.0449884\pi\)
\(234\) 616.000 0.172091
\(235\) 0 0
\(236\) 1960.00 0.540615
\(237\) 3570.00i 0.978466i
\(238\) − 546.000i − 0.148706i
\(239\) −2480.00 −0.671204 −0.335602 0.942004i \(-0.608940\pi\)
−0.335602 + 0.942004i \(0.608940\pi\)
\(240\) 0 0
\(241\) 1897.00 0.507039 0.253520 0.967330i \(-0.418412\pi\)
0.253520 + 0.967330i \(0.418412\pi\)
\(242\) 518.000i 0.137596i
\(243\) 4928.00i 1.30095i
\(244\) −3626.00 −0.951356
\(245\) 0 0
\(246\) −1421.00 −0.368291
\(247\) 980.000i 0.252453i
\(248\) 630.000i 0.161311i
\(249\) −5439.00 −1.38427
\(250\) 0 0
\(251\) −2373.00 −0.596743 −0.298371 0.954450i \(-0.596443\pi\)
−0.298371 + 0.954450i \(0.596443\pi\)
\(252\) − 924.000i − 0.230978i
\(253\) 6966.00i 1.73102i
\(254\) 874.000 0.215904
\(255\) 0 0
\(256\) −119.000 −0.0290527
\(257\) − 4494.00i − 1.09077i −0.838185 0.545385i \(-0.816383\pi\)
0.838185 0.545385i \(-0.183617\pi\)
\(258\) − 644.000i − 0.155402i
\(259\) 1884.00 0.451993
\(260\) 0 0
\(261\) 3520.00 0.834799
\(262\) 1092.00i 0.257496i
\(263\) − 722.000i − 0.169279i −0.996412 0.0846396i \(-0.973026\pi\)
0.996412 0.0846396i \(-0.0269739\pi\)
\(264\) −4515.00 −1.05257
\(265\) 0 0
\(266\) −210.000 −0.0484057
\(267\) − 6615.00i − 1.51622i
\(268\) 987.000i 0.224965i
\(269\) 6160.00 1.39621 0.698107 0.715993i \(-0.254026\pi\)
0.698107 + 0.715993i \(0.254026\pi\)
\(270\) 0 0
\(271\) −7238.00 −1.62243 −0.811213 0.584751i \(-0.801192\pi\)
−0.811213 + 0.584751i \(0.801192\pi\)
\(272\) 3731.00i 0.831710i
\(273\) 1176.00i 0.260713i
\(274\) −411.000 −0.0906183
\(275\) 0 0
\(276\) −7938.00 −1.73120
\(277\) 1776.00i 0.385233i 0.981274 + 0.192616i \(0.0616973\pi\)
−0.981274 + 0.192616i \(0.938303\pi\)
\(278\) 595.000i 0.128366i
\(279\) −924.000 −0.198274
\(280\) 0 0
\(281\) 4542.00 0.964246 0.482123 0.876104i \(-0.339866\pi\)
0.482123 + 0.876104i \(0.339866\pi\)
\(282\) 1372.00i 0.289721i
\(283\) − 7077.00i − 1.48652i −0.669005 0.743258i \(-0.733280\pi\)
0.669005 0.743258i \(-0.266720\pi\)
\(284\) 2884.00 0.602584
\(285\) 0 0
\(286\) 1204.00 0.248930
\(287\) − 1218.00i − 0.250510i
\(288\) − 3542.00i − 0.724703i
\(289\) −3368.00 −0.685528
\(290\) 0 0
\(291\) 8722.00 1.75702
\(292\) 5341.00i 1.07041i
\(293\) 4158.00i 0.829054i 0.910037 + 0.414527i \(0.136053\pi\)
−0.910037 + 0.414527i \(0.863947\pi\)
\(294\) 2149.00 0.426300
\(295\) 0 0
\(296\) 4710.00 0.924876
\(297\) 1505.00i 0.294037i
\(298\) 3200.00i 0.622050i
\(299\) 4536.00 0.877337
\(300\) 0 0
\(301\) 552.000 0.105703
\(302\) 202.000i 0.0384894i
\(303\) − 9114.00i − 1.72801i
\(304\) 1435.00 0.270733
\(305\) 0 0
\(306\) 2002.00 0.374009
\(307\) − 2569.00i − 0.477591i −0.971070 0.238796i \(-0.923247\pi\)
0.971070 0.238796i \(-0.0767526\pi\)
\(308\) − 1806.00i − 0.334112i
\(309\) −3724.00 −0.685602
\(310\) 0 0
\(311\) 2982.00 0.543710 0.271855 0.962338i \(-0.412363\pi\)
0.271855 + 0.962338i \(0.412363\pi\)
\(312\) 2940.00i 0.533477i
\(313\) − 2422.00i − 0.437379i −0.975795 0.218689i \(-0.929822\pi\)
0.975795 0.218689i \(-0.0701781\pi\)
\(314\) −406.000 −0.0729679
\(315\) 0 0
\(316\) −3570.00 −0.635532
\(317\) − 9484.00i − 1.68036i −0.542307 0.840181i \(-0.682449\pi\)
0.542307 0.840181i \(-0.317551\pi\)
\(318\) − 574.000i − 0.101221i
\(319\) 6880.00 1.20754
\(320\) 0 0
\(321\) −8883.00 −1.54455
\(322\) 972.000i 0.168222i
\(323\) 3185.00i 0.548663i
\(324\) −5873.00 −1.00703
\(325\) 0 0
\(326\) −3803.00 −0.646100
\(327\) 7490.00i 1.26666i
\(328\) − 3045.00i − 0.512598i
\(329\) −1176.00 −0.197067
\(330\) 0 0
\(331\) −183.000 −0.0303885 −0.0151942 0.999885i \(-0.504837\pi\)
−0.0151942 + 0.999885i \(0.504837\pi\)
\(332\) − 5439.00i − 0.899108i
\(333\) 6908.00i 1.13681i
\(334\) −4116.00 −0.674304
\(335\) 0 0
\(336\) 1722.00 0.279592
\(337\) 2861.00i 0.462459i 0.972899 + 0.231229i \(0.0742748\pi\)
−0.972899 + 0.231229i \(0.925725\pi\)
\(338\) 1413.00i 0.227388i
\(339\) 3521.00 0.564113
\(340\) 0 0
\(341\) −1806.00 −0.286805
\(342\) − 770.000i − 0.121745i
\(343\) 3900.00i 0.613936i
\(344\) 1380.00 0.216292
\(345\) 0 0
\(346\) 1512.00 0.234930
\(347\) − 629.000i − 0.0973098i −0.998816 0.0486549i \(-0.984507\pi\)
0.998816 0.0486549i \(-0.0154934\pi\)
\(348\) 7840.00i 1.20767i
\(349\) −5950.00 −0.912597 −0.456298 0.889827i \(-0.650825\pi\)
−0.456298 + 0.889827i \(0.650825\pi\)
\(350\) 0 0
\(351\) 980.000 0.149027
\(352\) − 6923.00i − 1.04829i
\(353\) 11718.0i 1.76682i 0.468604 + 0.883408i \(0.344757\pi\)
−0.468604 + 0.883408i \(0.655243\pi\)
\(354\) 1960.00 0.294274
\(355\) 0 0
\(356\) 6615.00 0.984815
\(357\) 3822.00i 0.566615i
\(358\) − 2585.00i − 0.381624i
\(359\) −8070.00 −1.18640 −0.593201 0.805054i \(-0.702136\pi\)
−0.593201 + 0.805054i \(0.702136\pi\)
\(360\) 0 0
\(361\) −5634.00 −0.821403
\(362\) − 2758.00i − 0.400434i
\(363\) − 3626.00i − 0.524286i
\(364\) −1176.00 −0.169338
\(365\) 0 0
\(366\) −3626.00 −0.517853
\(367\) 8316.00i 1.18281i 0.806374 + 0.591406i \(0.201427\pi\)
−0.806374 + 0.591406i \(0.798573\pi\)
\(368\) − 6642.00i − 0.940865i
\(369\) 4466.00 0.630056
\(370\) 0 0
\(371\) 492.000 0.0688500
\(372\) − 2058.00i − 0.286834i
\(373\) − 12062.0i − 1.67439i −0.546906 0.837194i \(-0.684195\pi\)
0.546906 0.837194i \(-0.315805\pi\)
\(374\) 3913.00 0.541006
\(375\) 0 0
\(376\) −2940.00 −0.403242
\(377\) − 4480.00i − 0.612021i
\(378\) 210.000i 0.0285747i
\(379\) −1735.00 −0.235148 −0.117574 0.993064i \(-0.537512\pi\)
−0.117574 + 0.993064i \(0.537512\pi\)
\(380\) 0 0
\(381\) −6118.00 −0.822663
\(382\) − 2378.00i − 0.318505i
\(383\) − 7602.00i − 1.01421i −0.861883 0.507107i \(-0.830715\pi\)
0.861883 0.507107i \(-0.169285\pi\)
\(384\) 10185.0 1.35352
\(385\) 0 0
\(386\) 3067.00 0.404420
\(387\) 2024.00i 0.265855i
\(388\) 8722.00i 1.14122i
\(389\) −3030.00 −0.394928 −0.197464 0.980310i \(-0.563271\pi\)
−0.197464 + 0.980310i \(0.563271\pi\)
\(390\) 0 0
\(391\) 14742.0 1.90674
\(392\) 4605.00i 0.593336i
\(393\) − 7644.00i − 0.981142i
\(394\) −2346.00 −0.299974
\(395\) 0 0
\(396\) 6622.00 0.840323
\(397\) − 1204.00i − 0.152209i −0.997100 0.0761046i \(-0.975752\pi\)
0.997100 0.0761046i \(-0.0242483\pi\)
\(398\) − 4900.00i − 0.617123i
\(399\) 1470.00 0.184441
\(400\) 0 0
\(401\) 1077.00 0.134122 0.0670609 0.997749i \(-0.478638\pi\)
0.0670609 + 0.997749i \(0.478638\pi\)
\(402\) 987.000i 0.122455i
\(403\) 1176.00i 0.145362i
\(404\) 9114.00 1.12237
\(405\) 0 0
\(406\) 960.000 0.117350
\(407\) 13502.0i 1.64440i
\(408\) 9555.00i 1.15942i
\(409\) 3955.00 0.478147 0.239074 0.971001i \(-0.423156\pi\)
0.239074 + 0.971001i \(0.423156\pi\)
\(410\) 0 0
\(411\) 2877.00 0.345285
\(412\) − 3724.00i − 0.445311i
\(413\) 1680.00i 0.200163i
\(414\) −3564.00 −0.423094
\(415\) 0 0
\(416\) −4508.00 −0.531305
\(417\) − 4165.00i − 0.489115i
\(418\) − 1505.00i − 0.176105i
\(419\) −6265.00 −0.730466 −0.365233 0.930916i \(-0.619011\pi\)
−0.365233 + 0.930916i \(0.619011\pi\)
\(420\) 0 0
\(421\) −3788.00 −0.438517 −0.219259 0.975667i \(-0.570364\pi\)
−0.219259 + 0.975667i \(0.570364\pi\)
\(422\) 4307.00i 0.496828i
\(423\) − 4312.00i − 0.495642i
\(424\) 1230.00 0.140882
\(425\) 0 0
\(426\) 2884.00 0.328005
\(427\) − 3108.00i − 0.352240i
\(428\) − 8883.00i − 1.00321i
\(429\) −8428.00 −0.948503
\(430\) 0 0
\(431\) −15258.0 −1.70523 −0.852613 0.522544i \(-0.824983\pi\)
−0.852613 + 0.522544i \(0.824983\pi\)
\(432\) − 1435.00i − 0.159818i
\(433\) 13573.0i 1.50641i 0.657784 + 0.753206i \(0.271494\pi\)
−0.657784 + 0.753206i \(0.728506\pi\)
\(434\) −252.000 −0.0278719
\(435\) 0 0
\(436\) −7490.00 −0.822720
\(437\) − 5670.00i − 0.620670i
\(438\) 5341.00i 0.582655i
\(439\) 8120.00 0.882794 0.441397 0.897312i \(-0.354483\pi\)
0.441397 + 0.897312i \(0.354483\pi\)
\(440\) 0 0
\(441\) −6754.00 −0.729295
\(442\) − 2548.00i − 0.274199i
\(443\) 6183.00i 0.663122i 0.943434 + 0.331561i \(0.107575\pi\)
−0.943434 + 0.331561i \(0.892425\pi\)
\(444\) −15386.0 −1.64457
\(445\) 0 0
\(446\) 2212.00 0.234846
\(447\) − 22400.0i − 2.37021i
\(448\) 1002.00i 0.105670i
\(449\) 1975.00 0.207586 0.103793 0.994599i \(-0.466902\pi\)
0.103793 + 0.994599i \(0.466902\pi\)
\(450\) 0 0
\(451\) 8729.00 0.911380
\(452\) 3521.00i 0.366402i
\(453\) − 1414.00i − 0.146657i
\(454\) −476.000 −0.0492066
\(455\) 0 0
\(456\) 3675.00 0.377407
\(457\) 11831.0i 1.21101i 0.795842 + 0.605504i \(0.207029\pi\)
−0.795842 + 0.605504i \(0.792971\pi\)
\(458\) 2940.00i 0.299950i
\(459\) 3185.00 0.323885
\(460\) 0 0
\(461\) 1932.00 0.195189 0.0975946 0.995226i \(-0.468885\pi\)
0.0975946 + 0.995226i \(0.468885\pi\)
\(462\) − 1806.00i − 0.181867i
\(463\) 9228.00i 0.926267i 0.886289 + 0.463133i \(0.153275\pi\)
−0.886289 + 0.463133i \(0.846725\pi\)
\(464\) −6560.00 −0.656337
\(465\) 0 0
\(466\) 1002.00 0.0996068
\(467\) 13916.0i 1.37892i 0.724324 + 0.689460i \(0.242152\pi\)
−0.724324 + 0.689460i \(0.757848\pi\)
\(468\) − 4312.00i − 0.425902i
\(469\) −846.000 −0.0832935
\(470\) 0 0
\(471\) 2842.00 0.278031
\(472\) 4200.00i 0.409578i
\(473\) 3956.00i 0.384560i
\(474\) −3570.00 −0.345940
\(475\) 0 0
\(476\) −3822.00 −0.368027
\(477\) 1804.00i 0.173165i
\(478\) − 2480.00i − 0.237307i
\(479\) −2310.00 −0.220348 −0.110174 0.993912i \(-0.535141\pi\)
−0.110174 + 0.993912i \(0.535141\pi\)
\(480\) 0 0
\(481\) 8792.00 0.833432
\(482\) 1897.00i 0.179266i
\(483\) − 6804.00i − 0.640979i
\(484\) 3626.00 0.340533
\(485\) 0 0
\(486\) −4928.00 −0.459956
\(487\) − 17114.0i − 1.59242i −0.605019 0.796211i \(-0.706835\pi\)
0.605019 0.796211i \(-0.293165\pi\)
\(488\) − 7770.00i − 0.720761i
\(489\) 26621.0 2.46185
\(490\) 0 0
\(491\) −17228.0 −1.58348 −0.791740 0.610858i \(-0.790825\pi\)
−0.791740 + 0.610858i \(0.790825\pi\)
\(492\) 9947.00i 0.911474i
\(493\) − 14560.0i − 1.33012i
\(494\) −980.000 −0.0892556
\(495\) 0 0
\(496\) 1722.00 0.155887
\(497\) 2472.00i 0.223107i
\(498\) − 5439.00i − 0.489412i
\(499\) 12500.0 1.12140 0.560698 0.828020i \(-0.310533\pi\)
0.560698 + 0.828020i \(0.310533\pi\)
\(500\) 0 0
\(501\) 28812.0 2.56931
\(502\) − 2373.00i − 0.210980i
\(503\) 868.000i 0.0769428i 0.999260 + 0.0384714i \(0.0122488\pi\)
−0.999260 + 0.0384714i \(0.987751\pi\)
\(504\) 1980.00 0.174992
\(505\) 0 0
\(506\) −6966.00 −0.612009
\(507\) − 9891.00i − 0.866420i
\(508\) − 6118.00i − 0.534335i
\(509\) −13370.0 −1.16427 −0.582136 0.813091i \(-0.697783\pi\)
−0.582136 + 0.813091i \(0.697783\pi\)
\(510\) 0 0
\(511\) −4578.00 −0.396319
\(512\) 11521.0i 0.994455i
\(513\) − 1225.00i − 0.105429i
\(514\) 4494.00 0.385646
\(515\) 0 0
\(516\) −4508.00 −0.384600
\(517\) − 8428.00i − 0.716950i
\(518\) 1884.00i 0.159803i
\(519\) −10584.0 −0.895156
\(520\) 0 0
\(521\) 21637.0 1.81945 0.909726 0.415210i \(-0.136292\pi\)
0.909726 + 0.415210i \(0.136292\pi\)
\(522\) 3520.00i 0.295146i
\(523\) − 287.000i − 0.0239955i −0.999928 0.0119977i \(-0.996181\pi\)
0.999928 0.0119977i \(-0.00381909\pi\)
\(524\) 7644.00 0.637270
\(525\) 0 0
\(526\) 722.000 0.0598492
\(527\) 3822.00i 0.315918i
\(528\) 12341.0i 1.01718i
\(529\) −14077.0 −1.15698
\(530\) 0 0
\(531\) −6160.00 −0.503430
\(532\) 1470.00i 0.119798i
\(533\) − 5684.00i − 0.461916i
\(534\) 6615.00 0.536066
\(535\) 0 0
\(536\) −2115.00 −0.170437
\(537\) 18095.0i 1.45411i
\(538\) 6160.00i 0.493637i
\(539\) −13201.0 −1.05493
\(540\) 0 0
\(541\) −5328.00 −0.423417 −0.211709 0.977333i \(-0.567903\pi\)
−0.211709 + 0.977333i \(0.567903\pi\)
\(542\) − 7238.00i − 0.573614i
\(543\) 19306.0i 1.52578i
\(544\) −14651.0 −1.15470
\(545\) 0 0
\(546\) −1176.00 −0.0921761
\(547\) 71.0000i 0.00554980i 0.999996 + 0.00277490i \(0.000883279\pi\)
−0.999996 + 0.00277490i \(0.999117\pi\)
\(548\) 2877.00i 0.224269i
\(549\) 11396.0 0.885919
\(550\) 0 0
\(551\) −5600.00 −0.432973
\(552\) − 17010.0i − 1.31158i
\(553\) − 3060.00i − 0.235306i
\(554\) −1776.00 −0.136200
\(555\) 0 0
\(556\) 4165.00 0.317689
\(557\) − 18444.0i − 1.40305i −0.712646 0.701524i \(-0.752503\pi\)
0.712646 0.701524i \(-0.247497\pi\)
\(558\) − 924.000i − 0.0701004i
\(559\) 2576.00 0.194907
\(560\) 0 0
\(561\) −27391.0 −2.06141
\(562\) 4542.00i 0.340912i
\(563\) − 672.000i − 0.0503045i −0.999684 0.0251522i \(-0.991993\pi\)
0.999684 0.0251522i \(-0.00800705\pi\)
\(564\) 9604.00 0.717024
\(565\) 0 0
\(566\) 7077.00 0.525563
\(567\) − 5034.00i − 0.372854i
\(568\) 6180.00i 0.456526i
\(569\) 10935.0 0.805657 0.402829 0.915275i \(-0.368027\pi\)
0.402829 + 0.915275i \(0.368027\pi\)
\(570\) 0 0
\(571\) −13588.0 −0.995867 −0.497934 0.867215i \(-0.665908\pi\)
−0.497934 + 0.867215i \(0.665908\pi\)
\(572\) − 8428.00i − 0.616071i
\(573\) 16646.0i 1.21361i
\(574\) 1218.00 0.0885685
\(575\) 0 0
\(576\) −3674.00 −0.265770
\(577\) 8701.00i 0.627777i 0.949460 + 0.313889i \(0.101632\pi\)
−0.949460 + 0.313889i \(0.898368\pi\)
\(578\) − 3368.00i − 0.242371i
\(579\) −21469.0 −1.54097
\(580\) 0 0
\(581\) 4662.00 0.332896
\(582\) 8722.00i 0.621200i
\(583\) 3526.00i 0.250484i
\(584\) −11445.0 −0.810955
\(585\) 0 0
\(586\) −4158.00 −0.293115
\(587\) 11361.0i 0.798839i 0.916768 + 0.399420i \(0.130788\pi\)
−0.916768 + 0.399420i \(0.869212\pi\)
\(588\) − 15043.0i − 1.05504i
\(589\) 1470.00 0.102836
\(590\) 0 0
\(591\) 16422.0 1.14300
\(592\) − 12874.0i − 0.893781i
\(593\) − 11417.0i − 0.790624i −0.918547 0.395312i \(-0.870636\pi\)
0.918547 0.395312i \(-0.129364\pi\)
\(594\) −1505.00 −0.103958
\(595\) 0 0
\(596\) 22400.0 1.53950
\(597\) 34300.0i 2.35143i
\(598\) 4536.00i 0.310185i
\(599\) 21050.0 1.43586 0.717930 0.696116i \(-0.245090\pi\)
0.717930 + 0.696116i \(0.245090\pi\)
\(600\) 0 0
\(601\) 7427.00 0.504083 0.252041 0.967716i \(-0.418898\pi\)
0.252041 + 0.967716i \(0.418898\pi\)
\(602\) 552.000i 0.0373718i
\(603\) − 3102.00i − 0.209491i
\(604\) 1414.00 0.0952564
\(605\) 0 0
\(606\) 9114.00 0.610942
\(607\) − 4144.00i − 0.277100i −0.990355 0.138550i \(-0.955756\pi\)
0.990355 0.138550i \(-0.0442442\pi\)
\(608\) 5635.00i 0.375871i
\(609\) −6720.00 −0.447140
\(610\) 0 0
\(611\) −5488.00 −0.363373
\(612\) − 14014.0i − 0.925625i
\(613\) − 30122.0i − 1.98469i −0.123489 0.992346i \(-0.539408\pi\)
0.123489 0.992346i \(-0.460592\pi\)
\(614\) 2569.00 0.168854
\(615\) 0 0
\(616\) 3870.00 0.253128
\(617\) − 11934.0i − 0.778679i −0.921094 0.389339i \(-0.872703\pi\)
0.921094 0.389339i \(-0.127297\pi\)
\(618\) − 3724.00i − 0.242397i
\(619\) −8540.00 −0.554526 −0.277263 0.960794i \(-0.589427\pi\)
−0.277263 + 0.960794i \(0.589427\pi\)
\(620\) 0 0
\(621\) −5670.00 −0.366392
\(622\) 2982.00i 0.192230i
\(623\) 5670.00i 0.364629i
\(624\) 8036.00 0.515541
\(625\) 0 0
\(626\) 2422.00 0.154637
\(627\) 10535.0i 0.671017i
\(628\) 2842.00i 0.180586i
\(629\) 28574.0 1.81132
\(630\) 0 0
\(631\) −3158.00 −0.199236 −0.0996181 0.995026i \(-0.531762\pi\)
−0.0996181 + 0.995026i \(0.531762\pi\)
\(632\) − 7650.00i − 0.481488i
\(633\) − 30149.0i − 1.89307i
\(634\) 9484.00 0.594097
\(635\) 0 0
\(636\) −4018.00 −0.250510
\(637\) 8596.00i 0.534672i
\(638\) 6880.00i 0.426931i
\(639\) −9064.00 −0.561137
\(640\) 0 0
\(641\) −4278.00 −0.263605 −0.131803 0.991276i \(-0.542076\pi\)
−0.131803 + 0.991276i \(0.542076\pi\)
\(642\) − 8883.00i − 0.546081i
\(643\) 11508.0i 0.705803i 0.935661 + 0.352901i \(0.114805\pi\)
−0.935661 + 0.352901i \(0.885195\pi\)
\(644\) 6804.00 0.416328
\(645\) 0 0
\(646\) −3185.00 −0.193982
\(647\) − 8204.00i − 0.498505i −0.968439 0.249252i \(-0.919815\pi\)
0.968439 0.249252i \(-0.0801849\pi\)
\(648\) − 12585.0i − 0.762941i
\(649\) −12040.0 −0.728215
\(650\) 0 0
\(651\) 1764.00 0.106201
\(652\) 26621.0i 1.59902i
\(653\) 5518.00i 0.330683i 0.986236 + 0.165342i \(0.0528726\pi\)
−0.986236 + 0.165342i \(0.947127\pi\)
\(654\) −7490.00 −0.447832
\(655\) 0 0
\(656\) −8323.00 −0.495364
\(657\) − 16786.0i − 0.996780i
\(658\) − 1176.00i − 0.0696736i
\(659\) −13295.0 −0.785887 −0.392944 0.919563i \(-0.628543\pi\)
−0.392944 + 0.919563i \(0.628543\pi\)
\(660\) 0 0
\(661\) −9968.00 −0.586551 −0.293276 0.956028i \(-0.594745\pi\)
−0.293276 + 0.956028i \(0.594745\pi\)
\(662\) − 183.000i − 0.0107440i
\(663\) 17836.0i 1.04479i
\(664\) 11655.0 0.681177
\(665\) 0 0
\(666\) −6908.00 −0.401921
\(667\) 25920.0i 1.50469i
\(668\) 28812.0i 1.66882i
\(669\) −15484.0 −0.894837
\(670\) 0 0
\(671\) 22274.0 1.28149
\(672\) 6762.00i 0.388169i
\(673\) 15738.0i 0.901419i 0.892671 + 0.450710i \(0.148829\pi\)
−0.892671 + 0.450710i \(0.851171\pi\)
\(674\) −2861.00 −0.163504
\(675\) 0 0
\(676\) 9891.00 0.562756
\(677\) − 19824.0i − 1.12540i −0.826660 0.562702i \(-0.809762\pi\)
0.826660 0.562702i \(-0.190238\pi\)
\(678\) 3521.00i 0.199444i
\(679\) −7476.00 −0.422537
\(680\) 0 0
\(681\) 3332.00 0.187493
\(682\) − 1806.00i − 0.101401i
\(683\) 11073.0i 0.620346i 0.950680 + 0.310173i \(0.100387\pi\)
−0.950680 + 0.310173i \(0.899613\pi\)
\(684\) −5390.00 −0.301304
\(685\) 0 0
\(686\) −3900.00 −0.217059
\(687\) − 20580.0i − 1.14291i
\(688\) − 3772.00i − 0.209021i
\(689\) 2296.00 0.126953
\(690\) 0 0
\(691\) −6503.00 −0.358011 −0.179006 0.983848i \(-0.557288\pi\)
−0.179006 + 0.983848i \(0.557288\pi\)
\(692\) − 10584.0i − 0.581421i
\(693\) 5676.00i 0.311130i
\(694\) 629.000 0.0344042
\(695\) 0 0
\(696\) −16800.0 −0.914946
\(697\) − 18473.0i − 1.00389i
\(698\) − 5950.00i − 0.322652i
\(699\) −7014.00 −0.379533
\(700\) 0 0
\(701\) −10148.0 −0.546768 −0.273384 0.961905i \(-0.588143\pi\)
−0.273384 + 0.961905i \(0.588143\pi\)
\(702\) 980.000i 0.0526891i
\(703\) − 10990.0i − 0.589610i
\(704\) −7181.00 −0.384438
\(705\) 0 0
\(706\) −11718.0 −0.624664
\(707\) 7812.00i 0.415559i
\(708\) − 13720.0i − 0.728290i
\(709\) 9980.00 0.528641 0.264321 0.964435i \(-0.414852\pi\)
0.264321 + 0.964435i \(0.414852\pi\)
\(710\) 0 0
\(711\) 11220.0 0.591818
\(712\) 14175.0i 0.746110i
\(713\) − 6804.00i − 0.357380i
\(714\) −3822.00 −0.200329
\(715\) 0 0
\(716\) −18095.0 −0.944472
\(717\) 17360.0i 0.904214i
\(718\) − 8070.00i − 0.419456i
\(719\) 27510.0 1.42691 0.713456 0.700700i \(-0.247129\pi\)
0.713456 + 0.700700i \(0.247129\pi\)
\(720\) 0 0
\(721\) 3192.00 0.164877
\(722\) − 5634.00i − 0.290410i
\(723\) − 13279.0i − 0.683059i
\(724\) −19306.0 −0.991025
\(725\) 0 0
\(726\) 3626.00 0.185363
\(727\) − 17024.0i − 0.868480i −0.900797 0.434240i \(-0.857017\pi\)
0.900797 0.434240i \(-0.142983\pi\)
\(728\) − 2520.00i − 0.128293i
\(729\) 11843.0 0.601687
\(730\) 0 0
\(731\) 8372.00 0.423597
\(732\) 25382.0i 1.28162i
\(733\) 34748.0i 1.75095i 0.483263 + 0.875475i \(0.339451\pi\)
−0.483263 + 0.875475i \(0.660549\pi\)
\(734\) −8316.00 −0.418187
\(735\) 0 0
\(736\) 26082.0 1.30624
\(737\) − 6063.00i − 0.303030i
\(738\) 4466.00i 0.222758i
\(739\) 12020.0 0.598326 0.299163 0.954202i \(-0.403293\pi\)
0.299163 + 0.954202i \(0.403293\pi\)
\(740\) 0 0
\(741\) 6860.00 0.340092
\(742\) 492.000i 0.0243422i
\(743\) − 28642.0i − 1.41423i −0.707098 0.707115i \(-0.749996\pi\)
0.707098 0.707115i \(-0.250004\pi\)
\(744\) 4410.00 0.217310
\(745\) 0 0
\(746\) 12062.0 0.591986
\(747\) 17094.0i 0.837265i
\(748\) − 27391.0i − 1.33892i
\(749\) 7614.00 0.371441
\(750\) 0 0
\(751\) 8752.00 0.425253 0.212627 0.977134i \(-0.431798\pi\)
0.212627 + 0.977134i \(0.431798\pi\)
\(752\) 8036.00i 0.389685i
\(753\) 16611.0i 0.803902i
\(754\) 4480.00 0.216382
\(755\) 0 0
\(756\) 1470.00 0.0707188
\(757\) 10256.0i 0.492418i 0.969217 + 0.246209i \(0.0791850\pi\)
−0.969217 + 0.246209i \(0.920815\pi\)
\(758\) − 1735.00i − 0.0831373i
\(759\) 48762.0 2.33195
\(760\) 0 0
\(761\) 33957.0 1.61753 0.808765 0.588132i \(-0.200136\pi\)
0.808765 + 0.588132i \(0.200136\pi\)
\(762\) − 6118.00i − 0.290855i
\(763\) − 6420.00i − 0.304613i
\(764\) −16646.0 −0.788261
\(765\) 0 0
\(766\) 7602.00 0.358579
\(767\) 7840.00i 0.369082i
\(768\) 833.000i 0.0391384i
\(769\) −27965.0 −1.31137 −0.655685 0.755034i \(-0.727620\pi\)
−0.655685 + 0.755034i \(0.727620\pi\)
\(770\) 0 0
\(771\) −31458.0 −1.46943
\(772\) − 21469.0i − 1.00089i
\(773\) − 9912.00i − 0.461203i −0.973048 0.230601i \(-0.925931\pi\)
0.973048 0.230601i \(-0.0740694\pi\)
\(774\) −2024.00 −0.0939938
\(775\) 0 0
\(776\) −18690.0 −0.864603
\(777\) − 13188.0i − 0.608902i
\(778\) − 3030.00i − 0.139628i
\(779\) −7105.00 −0.326782
\(780\) 0 0
\(781\) −17716.0 −0.811688
\(782\) 14742.0i 0.674134i
\(783\) 5600.00i 0.255591i
\(784\) 12587.0 0.573387
\(785\) 0 0
\(786\) 7644.00 0.346886
\(787\) − 25564.0i − 1.15789i −0.815367 0.578944i \(-0.803465\pi\)
0.815367 0.578944i \(-0.196535\pi\)
\(788\) 16422.0i 0.742398i
\(789\) −5054.00 −0.228045
\(790\) 0 0
\(791\) −3018.00 −0.135661
\(792\) 14190.0i 0.636641i
\(793\) − 14504.0i − 0.649498i
\(794\) 1204.00 0.0538141
\(795\) 0 0
\(796\) −34300.0 −1.52730
\(797\) 12446.0i 0.553149i 0.960992 + 0.276575i \(0.0891993\pi\)
−0.960992 + 0.276575i \(0.910801\pi\)
\(798\) 1470.00i 0.0652098i
\(799\) −17836.0 −0.789728
\(800\) 0 0
\(801\) −20790.0 −0.917077
\(802\) 1077.00i 0.0474192i
\(803\) − 32809.0i − 1.44185i
\(804\) 6909.00 0.303062
\(805\) 0 0
\(806\) −1176.00 −0.0513931
\(807\) − 43120.0i − 1.88091i
\(808\) 19530.0i 0.850325i
\(809\) −33970.0 −1.47629 −0.738147 0.674640i \(-0.764299\pi\)
−0.738147 + 0.674640i \(0.764299\pi\)
\(810\) 0 0
\(811\) 18732.0 0.811060 0.405530 0.914082i \(-0.367087\pi\)
0.405530 + 0.914082i \(0.367087\pi\)
\(812\) − 6720.00i − 0.290426i
\(813\) 50666.0i 2.18565i
\(814\) −13502.0 −0.581382
\(815\) 0 0
\(816\) 26117.0 1.12044
\(817\) − 3220.00i − 0.137887i
\(818\) 3955.00i 0.169051i
\(819\) 3696.00 0.157691
\(820\) 0 0
\(821\) 6162.00 0.261943 0.130972 0.991386i \(-0.458190\pi\)
0.130972 + 0.991386i \(0.458190\pi\)
\(822\) 2877.00i 0.122077i
\(823\) 25388.0i 1.07530i 0.843169 + 0.537649i \(0.180687\pi\)
−0.843169 + 0.537649i \(0.819313\pi\)
\(824\) 7980.00 0.337374
\(825\) 0 0
\(826\) −1680.00 −0.0707684
\(827\) 25201.0i 1.05964i 0.848109 + 0.529821i \(0.177741\pi\)
−0.848109 + 0.529821i \(0.822259\pi\)
\(828\) 24948.0i 1.04710i
\(829\) 19740.0 0.827019 0.413509 0.910500i \(-0.364303\pi\)
0.413509 + 0.910500i \(0.364303\pi\)
\(830\) 0 0
\(831\) 12432.0 0.518967
\(832\) 4676.00i 0.194845i
\(833\) 27937.0i 1.16202i
\(834\) 4165.00 0.172928
\(835\) 0 0
\(836\) −10535.0 −0.435838
\(837\) − 1470.00i − 0.0607057i
\(838\) − 6265.00i − 0.258259i
\(839\) −29680.0 −1.22130 −0.610648 0.791902i \(-0.709091\pi\)
−0.610648 + 0.791902i \(0.709091\pi\)
\(840\) 0 0
\(841\) 1211.00 0.0496535
\(842\) − 3788.00i − 0.155039i
\(843\) − 31794.0i − 1.29898i
\(844\) 30149.0 1.22959
\(845\) 0 0
\(846\) 4312.00 0.175236
\(847\) 3108.00i 0.126083i
\(848\) − 3362.00i − 0.136146i
\(849\) −49539.0 −2.00256
\(850\) 0 0
\(851\) −50868.0 −2.04904
\(852\) − 20188.0i − 0.811772i
\(853\) 1218.00i 0.0488904i 0.999701 + 0.0244452i \(0.00778193\pi\)
−0.999701 + 0.0244452i \(0.992218\pi\)
\(854\) 3108.00 0.124536
\(855\) 0 0
\(856\) 19035.0 0.760050
\(857\) 38731.0i 1.54379i 0.635752 + 0.771894i \(0.280690\pi\)
−0.635752 + 0.771894i \(0.719310\pi\)
\(858\) − 8428.00i − 0.335346i
\(859\) 23555.0 0.935607 0.467803 0.883833i \(-0.345046\pi\)
0.467803 + 0.883833i \(0.345046\pi\)
\(860\) 0 0
\(861\) −8526.00 −0.337474
\(862\) − 15258.0i − 0.602888i
\(863\) − 24872.0i − 0.981058i −0.871425 0.490529i \(-0.836804\pi\)
0.871425 0.490529i \(-0.163196\pi\)
\(864\) 5635.00 0.221883
\(865\) 0 0
\(866\) −13573.0 −0.532597
\(867\) 23576.0i 0.923510i
\(868\) 1764.00i 0.0689793i
\(869\) 21930.0 0.856069
\(870\) 0 0
\(871\) −3948.00 −0.153585
\(872\) − 16050.0i − 0.623305i
\(873\) − 27412.0i − 1.06272i
\(874\) 5670.00 0.219440
\(875\) 0 0
\(876\) 37387.0 1.44200
\(877\) − 17124.0i − 0.659335i −0.944097 0.329667i \(-0.893063\pi\)
0.944097 0.329667i \(-0.106937\pi\)
\(878\) 8120.00i 0.312115i
\(879\) 29106.0 1.11686
\(880\) 0 0
\(881\) −658.000 −0.0251630 −0.0125815 0.999921i \(-0.504005\pi\)
−0.0125815 + 0.999921i \(0.504005\pi\)
\(882\) − 6754.00i − 0.257845i
\(883\) − 33727.0i − 1.28540i −0.766120 0.642698i \(-0.777815\pi\)
0.766120 0.642698i \(-0.222185\pi\)
\(884\) −17836.0 −0.678608
\(885\) 0 0
\(886\) −6183.00 −0.234449
\(887\) 36036.0i 1.36412i 0.731298 + 0.682058i \(0.238915\pi\)
−0.731298 + 0.682058i \(0.761085\pi\)
\(888\) − 32970.0i − 1.24595i
\(889\) 5244.00 0.197838
\(890\) 0 0
\(891\) 36077.0 1.35648
\(892\) − 15484.0i − 0.581214i
\(893\) 6860.00i 0.257067i
\(894\) 22400.0 0.837996
\(895\) 0 0
\(896\) −8730.00 −0.325501
\(897\) − 31752.0i − 1.18190i
\(898\) 1975.00i 0.0733927i
\(899\) −6720.00 −0.249304
\(900\) 0 0
\(901\) 7462.00 0.275910
\(902\) 8729.00i 0.322222i
\(903\) − 3864.00i − 0.142399i
\(904\) −7545.00 −0.277592
\(905\) 0 0
\(906\) 1414.00 0.0518510
\(907\) 39156.0i 1.43347i 0.697348 + 0.716733i \(0.254363\pi\)
−0.697348 + 0.716733i \(0.745637\pi\)
\(908\) 3332.00i 0.121780i
\(909\) −28644.0 −1.04517
\(910\) 0 0
\(911\) 43532.0 1.58318 0.791591 0.611051i \(-0.209253\pi\)
0.791591 + 0.611051i \(0.209253\pi\)
\(912\) − 10045.0i − 0.364718i
\(913\) 33411.0i 1.21111i
\(914\) −11831.0 −0.428156
\(915\) 0 0
\(916\) 20580.0 0.742339
\(917\) 6552.00i 0.235950i
\(918\) 3185.00i 0.114511i
\(919\) 28610.0 1.02694 0.513469 0.858108i \(-0.328360\pi\)
0.513469 + 0.858108i \(0.328360\pi\)
\(920\) 0 0
\(921\) −17983.0 −0.643388
\(922\) 1932.00i 0.0690098i
\(923\) 11536.0i 0.411389i
\(924\) −12642.0 −0.450099
\(925\) 0 0
\(926\) −9228.00 −0.327485
\(927\) 11704.0i 0.414682i
\(928\) − 25760.0i − 0.911221i
\(929\) 24290.0 0.857835 0.428918 0.903344i \(-0.358895\pi\)
0.428918 + 0.903344i \(0.358895\pi\)
\(930\) 0 0
\(931\) 10745.0 0.378253
\(932\) − 7014.00i − 0.246514i
\(933\) − 20874.0i − 0.732459i
\(934\) −13916.0 −0.487522
\(935\) 0 0
\(936\) 9240.00 0.322670
\(937\) 34461.0i 1.20149i 0.799442 + 0.600743i \(0.205128\pi\)
−0.799442 + 0.600743i \(0.794872\pi\)
\(938\) − 846.000i − 0.0294487i
\(939\) −16954.0 −0.589215
\(940\) 0 0
\(941\) −40628.0 −1.40748 −0.703738 0.710460i \(-0.748487\pi\)
−0.703738 + 0.710460i \(0.748487\pi\)
\(942\) 2842.00i 0.0982987i
\(943\) 32886.0i 1.13565i
\(944\) 11480.0 0.395807
\(945\) 0 0
\(946\) −3956.00 −0.135963
\(947\) − 20904.0i − 0.717306i −0.933471 0.358653i \(-0.883236\pi\)
0.933471 0.358653i \(-0.116764\pi\)
\(948\) 24990.0i 0.856158i
\(949\) −21364.0 −0.730774
\(950\) 0 0
\(951\) −66388.0 −2.26370
\(952\) − 8190.00i − 0.278823i
\(953\) − 1807.00i − 0.0614213i −0.999528 0.0307106i \(-0.990223\pi\)
0.999528 0.0307106i \(-0.00977704\pi\)
\(954\) −1804.00 −0.0612229
\(955\) 0 0
\(956\) −17360.0 −0.587304
\(957\) − 48160.0i − 1.62674i
\(958\) − 2310.00i − 0.0779047i
\(959\) −2466.00 −0.0830358
\(960\) 0 0
\(961\) −28027.0 −0.940787
\(962\) 8792.00i 0.294663i
\(963\) 27918.0i 0.934211i
\(964\) 13279.0 0.443660
\(965\) 0 0
\(966\) 6804.00 0.226620
\(967\) − 57584.0i − 1.91497i −0.288482 0.957485i \(-0.593151\pi\)
0.288482 0.957485i \(-0.406849\pi\)
\(968\) 7770.00i 0.257993i
\(969\) 22295.0 0.739132
\(970\) 0 0
\(971\) 27237.0 0.900182 0.450091 0.892983i \(-0.351392\pi\)
0.450091 + 0.892983i \(0.351392\pi\)
\(972\) 34496.0i 1.13833i
\(973\) 3570.00i 0.117625i
\(974\) 17114.0 0.563006
\(975\) 0 0
\(976\) −21238.0 −0.696528
\(977\) − 13649.0i − 0.446950i −0.974710 0.223475i \(-0.928260\pi\)
0.974710 0.223475i \(-0.0717401\pi\)
\(978\) 26621.0i 0.870394i
\(979\) −40635.0 −1.32656
\(980\) 0 0
\(981\) 23540.0 0.766131
\(982\) − 17228.0i − 0.559845i
\(983\) − 16002.0i − 0.519211i −0.965715 0.259606i \(-0.916407\pi\)
0.965715 0.259606i \(-0.0835925\pi\)
\(984\) −21315.0 −0.690546
\(985\) 0 0
\(986\) 14560.0 0.470269
\(987\) 8232.00i 0.265479i
\(988\) 6860.00i 0.220896i
\(989\) −14904.0 −0.479191
\(990\) 0 0
\(991\) 37022.0 1.18672 0.593362 0.804936i \(-0.297800\pi\)
0.593362 + 0.804936i \(0.297800\pi\)
\(992\) 6762.00i 0.216425i
\(993\) 1281.00i 0.0409379i
\(994\) −2472.00 −0.0788804
\(995\) 0 0
\(996\) −38073.0 −1.21123
\(997\) 18396.0i 0.584360i 0.956363 + 0.292180i \(0.0943807\pi\)
−0.956363 + 0.292180i \(0.905619\pi\)
\(998\) 12500.0i 0.396474i
\(999\) −10990.0 −0.348056
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 25.4.b.b.24.2 2
3.2 odd 2 225.4.b.f.199.1 2
4.3 odd 2 400.4.c.e.49.2 2
5.2 odd 4 25.4.a.a.1.1 1
5.3 odd 4 25.4.a.b.1.1 yes 1
5.4 even 2 inner 25.4.b.b.24.1 2
15.2 even 4 225.4.a.e.1.1 1
15.8 even 4 225.4.a.c.1.1 1
15.14 odd 2 225.4.b.f.199.2 2
20.3 even 4 400.4.a.c.1.1 1
20.7 even 4 400.4.a.s.1.1 1
20.19 odd 2 400.4.c.e.49.1 2
35.13 even 4 1225.4.a.i.1.1 1
35.27 even 4 1225.4.a.h.1.1 1
40.3 even 4 1600.4.a.bs.1.1 1
40.13 odd 4 1600.4.a.i.1.1 1
40.27 even 4 1600.4.a.h.1.1 1
40.37 odd 4 1600.4.a.bt.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
25.4.a.a.1.1 1 5.2 odd 4
25.4.a.b.1.1 yes 1 5.3 odd 4
25.4.b.b.24.1 2 5.4 even 2 inner
25.4.b.b.24.2 2 1.1 even 1 trivial
225.4.a.c.1.1 1 15.8 even 4
225.4.a.e.1.1 1 15.2 even 4
225.4.b.f.199.1 2 3.2 odd 2
225.4.b.f.199.2 2 15.14 odd 2
400.4.a.c.1.1 1 20.3 even 4
400.4.a.s.1.1 1 20.7 even 4
400.4.c.e.49.1 2 20.19 odd 2
400.4.c.e.49.2 2 4.3 odd 2
1225.4.a.h.1.1 1 35.27 even 4
1225.4.a.i.1.1 1 35.13 even 4
1600.4.a.h.1.1 1 40.27 even 4
1600.4.a.i.1.1 1 40.13 odd 4
1600.4.a.bs.1.1 1 40.3 even 4
1600.4.a.bt.1.1 1 40.37 odd 4