Newspace parameters
Level: | \( N \) | \(=\) | \( 25 = 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 25.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.47504775014\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-1}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 5) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/25\mathbb{Z}\right)^\times\).
\(n\) | \(2\) |
\(\chi(n)\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
24.1 |
|
− | 4.00000i | − | 2.00000i | −8.00000 | 0 | −8.00000 | 6.00000i | 0 | 23.0000 | 0 | ||||||||||||||||||||||
24.2 | 4.00000i | 2.00000i | −8.00000 | 0 | −8.00000 | − | 6.00000i | 0 | 23.0000 | 0 | ||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 25.4.b.a | 2 | |
3.b | odd | 2 | 1 | 225.4.b.c | 2 | ||
4.b | odd | 2 | 1 | 400.4.c.k | 2 | ||
5.b | even | 2 | 1 | inner | 25.4.b.a | 2 | |
5.c | odd | 4 | 1 | 5.4.a.a | ✓ | 1 | |
5.c | odd | 4 | 1 | 25.4.a.c | 1 | ||
15.d | odd | 2 | 1 | 225.4.b.c | 2 | ||
15.e | even | 4 | 1 | 45.4.a.d | 1 | ||
15.e | even | 4 | 1 | 225.4.a.b | 1 | ||
20.d | odd | 2 | 1 | 400.4.c.k | 2 | ||
20.e | even | 4 | 1 | 80.4.a.d | 1 | ||
20.e | even | 4 | 1 | 400.4.a.m | 1 | ||
35.f | even | 4 | 1 | 245.4.a.a | 1 | ||
35.f | even | 4 | 1 | 1225.4.a.k | 1 | ||
35.k | even | 12 | 2 | 245.4.e.g | 2 | ||
35.l | odd | 12 | 2 | 245.4.e.f | 2 | ||
40.i | odd | 4 | 1 | 320.4.a.g | 1 | ||
40.i | odd | 4 | 1 | 1600.4.a.bi | 1 | ||
40.k | even | 4 | 1 | 320.4.a.h | 1 | ||
40.k | even | 4 | 1 | 1600.4.a.s | 1 | ||
45.k | odd | 12 | 2 | 405.4.e.l | 2 | ||
45.l | even | 12 | 2 | 405.4.e.c | 2 | ||
55.e | even | 4 | 1 | 605.4.a.d | 1 | ||
60.l | odd | 4 | 1 | 720.4.a.u | 1 | ||
65.h | odd | 4 | 1 | 845.4.a.b | 1 | ||
80.i | odd | 4 | 1 | 1280.4.d.e | 2 | ||
80.j | even | 4 | 1 | 1280.4.d.l | 2 | ||
80.s | even | 4 | 1 | 1280.4.d.l | 2 | ||
80.t | odd | 4 | 1 | 1280.4.d.e | 2 | ||
85.g | odd | 4 | 1 | 1445.4.a.a | 1 | ||
95.g | even | 4 | 1 | 1805.4.a.h | 1 | ||
105.k | odd | 4 | 1 | 2205.4.a.q | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
5.4.a.a | ✓ | 1 | 5.c | odd | 4 | 1 | |
25.4.a.c | 1 | 5.c | odd | 4 | 1 | ||
25.4.b.a | 2 | 1.a | even | 1 | 1 | trivial | |
25.4.b.a | 2 | 5.b | even | 2 | 1 | inner | |
45.4.a.d | 1 | 15.e | even | 4 | 1 | ||
80.4.a.d | 1 | 20.e | even | 4 | 1 | ||
225.4.a.b | 1 | 15.e | even | 4 | 1 | ||
225.4.b.c | 2 | 3.b | odd | 2 | 1 | ||
225.4.b.c | 2 | 15.d | odd | 2 | 1 | ||
245.4.a.a | 1 | 35.f | even | 4 | 1 | ||
245.4.e.f | 2 | 35.l | odd | 12 | 2 | ||
245.4.e.g | 2 | 35.k | even | 12 | 2 | ||
320.4.a.g | 1 | 40.i | odd | 4 | 1 | ||
320.4.a.h | 1 | 40.k | even | 4 | 1 | ||
400.4.a.m | 1 | 20.e | even | 4 | 1 | ||
400.4.c.k | 2 | 4.b | odd | 2 | 1 | ||
400.4.c.k | 2 | 20.d | odd | 2 | 1 | ||
405.4.e.c | 2 | 45.l | even | 12 | 2 | ||
405.4.e.l | 2 | 45.k | odd | 12 | 2 | ||
605.4.a.d | 1 | 55.e | even | 4 | 1 | ||
720.4.a.u | 1 | 60.l | odd | 4 | 1 | ||
845.4.a.b | 1 | 65.h | odd | 4 | 1 | ||
1225.4.a.k | 1 | 35.f | even | 4 | 1 | ||
1280.4.d.e | 2 | 80.i | odd | 4 | 1 | ||
1280.4.d.e | 2 | 80.t | odd | 4 | 1 | ||
1280.4.d.l | 2 | 80.j | even | 4 | 1 | ||
1280.4.d.l | 2 | 80.s | even | 4 | 1 | ||
1445.4.a.a | 1 | 85.g | odd | 4 | 1 | ||
1600.4.a.s | 1 | 40.k | even | 4 | 1 | ||
1600.4.a.bi | 1 | 40.i | odd | 4 | 1 | ||
1805.4.a.h | 1 | 95.g | even | 4 | 1 | ||
2205.4.a.q | 1 | 105.k | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} + 16 \)
acting on \(S_{4}^{\mathrm{new}}(25, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} + 16 \)
$3$
\( T^{2} + 4 \)
$5$
\( T^{2} \)
$7$
\( T^{2} + 36 \)
$11$
\( (T - 32)^{2} \)
$13$
\( T^{2} + 1444 \)
$17$
\( T^{2} + 676 \)
$19$
\( (T + 100)^{2} \)
$23$
\( T^{2} + 6084 \)
$29$
\( (T - 50)^{2} \)
$31$
\( (T + 108)^{2} \)
$37$
\( T^{2} + 70756 \)
$41$
\( (T - 22)^{2} \)
$43$
\( T^{2} + 195364 \)
$47$
\( T^{2} + 264196 \)
$53$
\( T^{2} + 4 \)
$59$
\( (T + 500)^{2} \)
$61$
\( (T + 518)^{2} \)
$67$
\( T^{2} + 15876 \)
$71$
\( (T - 412)^{2} \)
$73$
\( T^{2} + 770884 \)
$79$
\( (T + 600)^{2} \)
$83$
\( T^{2} + 79524 \)
$89$
\( (T - 150)^{2} \)
$97$
\( T^{2} + 148996 \)
show more
show less