Properties

Label 25.4.b
Level $25$
Weight $4$
Character orbit 25.b
Rep. character $\chi_{25}(24,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $2$
Sturm bound $10$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 25.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(10\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(25, [\chi])\).

Total New Old
Modular forms 10 6 4
Cusp forms 4 4 0
Eisenstein series 6 2 4

Trace form

\( 4 q - 2 q^{4} - 2 q^{6} + 2 q^{9} - 22 q^{11} + 36 q^{14} - 46 q^{16} - 130 q^{19} + 108 q^{21} + 210 q^{24} + 248 q^{26} - 220 q^{29} - 132 q^{31} + 26 q^{34} - 676 q^{36} + 544 q^{39} - 362 q^{41} - 1114 q^{44}+ \cdots + 3364 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(25, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
25.4.b.a 25.b 5.b $2$ $1.475$ \(\Q(\sqrt{-1}) \) None 5.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta q^{2}+\beta q^{3}-8 q^{4}-8 q^{6}-3\beta q^{7}+\cdots\)
25.4.b.b 25.b 5.b $2$ $1.475$ \(\Q(\sqrt{-1}) \) None 25.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-7 i q^{3}+7 q^{4}+7 q^{6}+6 i q^{7}+\cdots\)