Defining parameters
Level: | \( N \) | \(=\) | \( 25 = 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 25.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(10\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(25, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 10 | 6 | 4 |
Cusp forms | 4 | 4 | 0 |
Eisenstein series | 6 | 2 | 4 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(25, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
25.4.b.a | $2$ | $1.475$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+2\beta q^{2}+\beta q^{3}-8 q^{4}-8 q^{6}-3\beta q^{7}+\cdots\) |
25.4.b.b | $2$ | $1.475$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+i q^{2}-7 i q^{3}+7 q^{4}+7 q^{6}+6 i q^{7}+\cdots\) |