Newspace parameters
Level: | \( N \) | \(=\) | \( 25 = 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 34 \) |
Character orbit: | \([\chi]\) | \(=\) | 25.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(172.457072203\) |
Analytic rank: | \(0\) |
Dimension: | \(22\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
24.1 | − | 177167.i | − | 1.20911e8i | −2.27982e10 | 0 | −2.14214e13 | − | 1.11259e14i | 2.51723e15i | −9.06036e15 | 0 | |||||||||||||||
24.2 | − | 171393.i | 3.66048e7i | −2.07856e10 | 0 | 6.27381e12 | − | 4.77732e13i | 2.09024e15i | 4.21915e15 | 0 | ||||||||||||||||
24.3 | − | 153994.i | 7.94763e7i | −1.51243e10 | 0 | 1.22389e13 | 4.85062e13i | 1.00626e15i | −7.57418e14 | 0 | |||||||||||||||||
24.4 | − | 140551.i | − | 1.29136e8i | −1.11647e10 | 0 | −1.81502e13 | 4.00085e13i | 3.61884e14i | −1.11170e16 | 0 | ||||||||||||||||
24.5 | − | 109239.i | − | 1.96178e7i | −3.34318e9 | 0 | −2.14302e12 | − | 7.24227e12i | − | 5.73150e14i | 5.17420e15 | 0 | ||||||||||||||
24.6 | − | 104621.i | − | 2.08087e7i | −2.35554e9 | 0 | −2.17702e12 | 5.34780e13i | − | 6.52247e14i | 5.12606e15 | 0 | |||||||||||||||
24.7 | − | 100295.i | 1.18201e8i | −1.46921e9 | 0 | 1.18550e13 | − | 1.07417e13i | − | 7.14175e14i | −8.41244e15 | 0 | |||||||||||||||
24.8 | − | 61242.8i | − | 1.16397e8i | 4.83925e9 | 0 | −7.12847e12 | 1.52684e14i | − | 8.22441e14i | −7.98915e15 | 0 | |||||||||||||||
24.9 | − | 41215.3i | 1.10688e8i | 6.89123e9 | 0 | 4.56203e12 | − | 7.02715e13i | − | 6.38061e14i | −6.69270e15 | 0 | |||||||||||||||
24.10 | − | 34748.6i | − | 4.98225e7i | 7.38247e9 | 0 | −1.73126e12 | − | 1.47813e14i | − | 5.55018e14i | 3.07678e15 | 0 | ||||||||||||||
24.11 | − | 642.905i | 5.85306e7i | 8.58952e9 | 0 | 3.76296e10 | 1.03914e14i | − | 1.10448e13i | 2.13323e15 | 0 | ||||||||||||||||
24.12 | 642.905i | − | 5.85306e7i | 8.58952e9 | 0 | 3.76296e10 | − | 1.03914e14i | 1.10448e13i | 2.13323e15 | 0 | ||||||||||||||||
24.13 | 34748.6i | 4.98225e7i | 7.38247e9 | 0 | −1.73126e12 | 1.47813e14i | 5.55018e14i | 3.07678e15 | 0 | ||||||||||||||||||
24.14 | 41215.3i | − | 1.10688e8i | 6.89123e9 | 0 | 4.56203e12 | 7.02715e13i | 6.38061e14i | −6.69270e15 | 0 | |||||||||||||||||
24.15 | 61242.8i | 1.16397e8i | 4.83925e9 | 0 | −7.12847e12 | − | 1.52684e14i | 8.22441e14i | −7.98915e15 | 0 | |||||||||||||||||
24.16 | 100295.i | − | 1.18201e8i | −1.46921e9 | 0 | 1.18550e13 | 1.07417e13i | 7.14175e14i | −8.41244e15 | 0 | |||||||||||||||||
24.17 | 104621.i | 2.08087e7i | −2.35554e9 | 0 | −2.17702e12 | − | 5.34780e13i | 6.52247e14i | 5.12606e15 | 0 | |||||||||||||||||
24.18 | 109239.i | 1.96178e7i | −3.34318e9 | 0 | −2.14302e12 | 7.24227e12i | 5.73150e14i | 5.17420e15 | 0 | ||||||||||||||||||
24.19 | 140551.i | 1.29136e8i | −1.11647e10 | 0 | −1.81502e13 | − | 4.00085e13i | − | 3.61884e14i | −1.11170e16 | 0 | ||||||||||||||||
24.20 | 153994.i | − | 7.94763e7i | −1.51243e10 | 0 | 1.22389e13 | − | 4.85062e13i | − | 1.00626e15i | −7.57418e14 | 0 | |||||||||||||||
See all 22 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 25.34.b.d | 22 | |
5.b | even | 2 | 1 | inner | 25.34.b.d | 22 | |
5.c | odd | 4 | 1 | 25.34.a.d | ✓ | 11 | |
5.c | odd | 4 | 1 | 25.34.a.e | yes | 11 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
25.34.a.d | ✓ | 11 | 5.c | odd | 4 | 1 | |
25.34.a.e | yes | 11 | 5.c | odd | 4 | 1 | |
25.34.b.d | 22 | 1.a | even | 1 | 1 | trivial | |
25.34.b.d | 22 | 5.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(87\!\cdots\!80\)\( T_{2}^{18} + \)\(29\!\cdots\!60\)\( T_{2}^{16} + \)\(59\!\cdots\!80\)\( T_{2}^{14} + \)\(75\!\cdots\!88\)\( T_{2}^{12} + \)\(59\!\cdots\!12\)\( T_{2}^{10} + \)\(28\!\cdots\!20\)\( T_{2}^{8} + \)\(73\!\cdots\!40\)\( T_{2}^{6} + \)\(92\!\cdots\!20\)\( T_{2}^{4} + \)\(43\!\cdots\!36\)\( T_{2}^{2} + \)\(18\!\cdots\!24\)\( \)">\(T_{2}^{22} + \cdots\) acting on \(S_{34}^{\mathrm{new}}(25, [\chi])\).