Properties

Label 25.3.f
Level $25$
Weight $3$
Character orbit 25.f
Rep. character $\chi_{25}(2,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $32$
Newform subspaces $1$
Sturm bound $7$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 25.f (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 1 \)
Sturm bound: \(7\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(25, [\chi])\).

Total New Old
Modular forms 48 48 0
Cusp forms 32 32 0
Eisenstein series 16 16 0

Trace form

\( 32 q - 10 q^{2} - 10 q^{3} - 10 q^{4} - 10 q^{5} - 6 q^{6} - 10 q^{7} - 10 q^{8} - 10 q^{9} + O(q^{10}) \) \( 32 q - 10 q^{2} - 10 q^{3} - 10 q^{4} - 10 q^{5} - 6 q^{6} - 10 q^{7} - 10 q^{8} - 10 q^{9} - 10 q^{10} - 6 q^{11} - 10 q^{12} - 10 q^{13} - 10 q^{14} - 10 q^{15} + 2 q^{16} + 60 q^{17} + 140 q^{18} + 90 q^{19} + 130 q^{20} - 6 q^{21} + 70 q^{22} + 10 q^{23} - 40 q^{25} + 4 q^{26} - 100 q^{27} - 250 q^{28} - 110 q^{29} - 250 q^{30} - 6 q^{31} - 290 q^{32} - 190 q^{33} - 260 q^{34} - 120 q^{35} - 58 q^{36} + 50 q^{37} + 320 q^{38} + 390 q^{39} + 440 q^{40} - 86 q^{41} + 690 q^{42} + 230 q^{43} + 340 q^{44} + 310 q^{45} - 6 q^{46} + 70 q^{47} + 160 q^{48} - 100 q^{50} - 16 q^{51} - 320 q^{52} - 190 q^{53} - 660 q^{54} - 250 q^{55} - 70 q^{56} - 650 q^{57} - 640 q^{58} - 260 q^{59} - 550 q^{60} + 114 q^{61} + 60 q^{62} - 20 q^{63} + 340 q^{64} + 360 q^{65} + 138 q^{66} + 270 q^{67} + 710 q^{68} + 340 q^{69} + 310 q^{70} - 66 q^{71} + 360 q^{72} + 30 q^{73} - 90 q^{75} - 80 q^{76} - 250 q^{77} - 500 q^{78} - 210 q^{79} - 850 q^{80} + 62 q^{81} + 30 q^{82} - 10 q^{84} + 600 q^{85} - 6 q^{86} + 300 q^{87} + 190 q^{88} - 10 q^{89} + 380 q^{90} - 6 q^{91} - 30 q^{92} + 520 q^{93} + 790 q^{94} + 310 q^{95} + 174 q^{96} + 270 q^{97} + 170 q^{98} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(25, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
25.3.f.a 25.f 25.f $32$ $0.681$ None \(-10\) \(-10\) \(-10\) \(-10\) $\mathrm{SU}(2)[C_{20}]$