Properties

Label 25.3.f
Level $25$
Weight $3$
Character orbit 25.f
Rep. character $\chi_{25}(2,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $32$
Newform subspaces $1$
Sturm bound $7$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 25.f (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 1 \)
Sturm bound: \(7\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(25, [\chi])\).

Total New Old
Modular forms 48 48 0
Cusp forms 32 32 0
Eisenstein series 16 16 0

Trace form

\( 32 q - 10 q^{2} - 10 q^{3} - 10 q^{4} - 10 q^{5} - 6 q^{6} - 10 q^{7} - 10 q^{8} - 10 q^{9} - 10 q^{10} - 6 q^{11} - 10 q^{12} - 10 q^{13} - 10 q^{14} - 10 q^{15} + 2 q^{16} + 60 q^{17} + 140 q^{18} + 90 q^{19}+ \cdots + 170 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(25, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
25.3.f.a 25.f 25.f $32$ $0.681$ None 25.3.f.a \(-10\) \(-10\) \(-10\) \(-10\) $\mathrm{SU}(2)[C_{20}]$