Defining parameters
Level: | \( N \) | \(=\) | \( 25 = 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 26 \) |
Character orbit: | \([\chi]\) | \(=\) | 25.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(65\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{26}(25, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 66 | 38 | 28 |
Cusp forms | 60 | 36 | 24 |
Eisenstein series | 6 | 2 | 4 |
Trace form
Decomposition of \(S_{26}^{\mathrm{new}}(25, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
25.26.b.a | $2$ | $98.999$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+24\beta q^{2}-97902\beta q^{3}+33552128 q^{4}+\cdots\) |
25.26.b.b | $8$ | $98.999$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{4}q^{2}+(17\beta _{4}+158\beta _{5}+\beta _{6})q^{3}+\cdots\) |
25.26.b.c | $10$ | $98.999$ | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{5}q^{2}+(5^{2}\beta _{5}-24\beta _{6}-\beta _{7})q^{3}+\cdots\) |
25.26.b.d | $16$ | $98.999$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(23\beta _{1}+\beta _{10})q^{3}+(-21241963+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{26}^{\mathrm{old}}(25, [\chi])\) into lower level spaces
\( S_{26}^{\mathrm{old}}(25, [\chi]) \simeq \) \(S_{26}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 2}\)