Properties

Label 25.26.b
Level $25$
Weight $26$
Character orbit 25.b
Rep. character $\chi_{25}(24,\cdot)$
Character field $\Q$
Dimension $36$
Newform subspaces $4$
Sturm bound $65$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 25.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(65\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{26}(25, [\chi])\).

Total New Old
Modular forms 66 38 28
Cusp forms 60 36 24
Eisenstein series 6 2 4

Trace form

\( 36 q - 639695442 q^{4} - 16762414838 q^{6} - 8813449216228 q^{9} + 7109701558272 q^{11} + 11\!\cdots\!76 q^{14} + 96\!\cdots\!66 q^{16} - 33\!\cdots\!60 q^{19} + 23\!\cdots\!52 q^{21} + 18\!\cdots\!70 q^{24}+ \cdots + 13\!\cdots\!44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{26}^{\mathrm{new}}(25, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
25.26.b.a 25.b 5.b $2$ $98.999$ \(\Q(\sqrt{-1}) \) None 1.26.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+24\beta q^{2}-97902\beta q^{3}+33552128 q^{4}+\cdots\)
25.26.b.b 25.b 5.b $8$ $98.999$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 5.26.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{4}q^{2}+(17\beta _{4}+158\beta _{5}+\beta _{6})q^{3}+\cdots\)
25.26.b.c 25.b 5.b $10$ $98.999$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 5.26.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{2}+(5^{2}\beta _{5}-24\beta _{6}-\beta _{7})q^{3}+\cdots\)
25.26.b.d 25.b 5.b $16$ $98.999$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 25.26.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(23\beta _{1}+\beta _{10})q^{3}+(-21241963+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{26}^{\mathrm{old}}(25, [\chi])\) into lower level spaces

\( S_{26}^{\mathrm{old}}(25, [\chi]) \simeq \) \(S_{26}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 2}\)