Properties

Label 25.22.b
Level $25$
Weight $22$
Character orbit 25.b
Rep. character $\chi_{25}(24,\cdot)$
Character field $\Q$
Dimension $30$
Newform subspaces $4$
Sturm bound $55$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 25.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(55\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{22}(25, [\chi])\).

Total New Old
Modular forms 56 32 24
Cusp forms 50 30 20
Eisenstein series 6 2 4

Trace form

\( 30 q - 31784210 q^{4} - 255239990 q^{6} - 63470082940 q^{9} - 149672541190 q^{11} - 1353236063220 q^{14} + 21447493499330 q^{16} + 123132251000750 q^{19} - 265422927060540 q^{21} + 12\!\cdots\!50 q^{24}+ \cdots + 15\!\cdots\!20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{22}^{\mathrm{new}}(25, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
25.22.b.a 25.b 5.b $2$ $69.869$ \(\Q(\sqrt{-1}) \) None 1.22.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+144\beta q^{2}-64422\beta q^{3}+2014208 q^{4}+\cdots\)
25.22.b.b 25.b 5.b $6$ $69.869$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 5.22.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2\beta _{1}-\beta _{4})q^{2}+(-68\beta _{1}+7\beta _{4}+\cdots)q^{3}+\cdots\)
25.22.b.c 25.b 5.b $8$ $69.869$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 5.22.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{4}-\beta _{5})q^{2}+(-14\beta _{4}+11\beta _{5}+\cdots)q^{3}+\cdots\)
25.22.b.d 25.b 5.b $14$ $69.869$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None 25.22.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{7}q^{2}+(-\beta _{7}+\beta _{9})q^{3}+(-1107130+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{22}^{\mathrm{old}}(25, [\chi])\) into lower level spaces

\( S_{22}^{\mathrm{old}}(25, [\chi]) \simeq \) \(S_{22}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 2}\)