Defining parameters
Level: | \( N \) | \(=\) | \( 25 = 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 22 \) |
Character orbit: | \([\chi]\) | \(=\) | 25.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(55\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{22}(25, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 56 | 32 | 24 |
Cusp forms | 50 | 30 | 20 |
Eisenstein series | 6 | 2 | 4 |
Trace form
Decomposition of \(S_{22}^{\mathrm{new}}(25, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
25.22.b.a | $2$ | $69.869$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+144\beta q^{2}-64422\beta q^{3}+2014208 q^{4}+\cdots\) |
25.22.b.b | $6$ | $69.869$ | \(\mathbb{Q}[x]/(x^{6} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-2\beta _{1}-\beta _{4})q^{2}+(-68\beta _{1}+7\beta _{4}+\cdots)q^{3}+\cdots\) |
25.22.b.c | $8$ | $69.869$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta _{4}-\beta _{5})q^{2}+(-14\beta _{4}+11\beta _{5}+\cdots)q^{3}+\cdots\) |
25.22.b.d | $14$ | $69.869$ | \(\mathbb{Q}[x]/(x^{14} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{7}q^{2}+(-\beta _{7}+\beta _{9})q^{3}+(-1107130+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{22}^{\mathrm{old}}(25, [\chi])\) into lower level spaces
\( S_{22}^{\mathrm{old}}(25, [\chi]) \simeq \) \(S_{22}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 2}\)