Defining parameters
Level: | \( N \) | \(=\) | \( 25 = 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 22 \) |
Character orbit: | \([\chi]\) | \(=\) | 25.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(55\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_0(25))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 55 | 35 | 20 |
Cusp forms | 49 | 32 | 17 |
Eisenstein series | 6 | 3 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | Dim. |
---|---|
\(+\) | \(15\) |
\(-\) | \(17\) |
Trace form
Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_0(25))\) into newform subspaces
Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_0(25))\) into lower level spaces
\( S_{22}^{\mathrm{old}}(\Gamma_0(25)) \cong \) \(S_{22}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)