Properties

Label 25.2.e.a.4.1
Level $25$
Weight $2$
Character 25.4
Analytic conductor $0.200$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [25,2,Mod(4,25)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(25, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("25.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 25.e (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.199626005053\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.58140625.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 4x^{6} - 7x^{5} + 11x^{4} + 5x^{3} - 10x^{2} - 25x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 4.1
Root \(-0.983224 - 0.644389i\) of defining polynomial
Character \(\chi\) \(=\) 25.4
Dual form 25.2.e.a.19.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.98322 - 0.644389i) q^{2} +(1.29224 - 1.77862i) q^{3} +(1.89991 + 1.38036i) q^{4} +(-1.22570 + 1.87020i) q^{5} +(-3.70892 + 2.69469i) q^{6} +0.992398i q^{7} +(-0.427051 - 0.587785i) q^{8} +(-0.566541 - 1.74363i) q^{9} +O(q^{10})\) \(q+(-1.98322 - 0.644389i) q^{2} +(1.29224 - 1.77862i) q^{3} +(1.89991 + 1.38036i) q^{4} +(-1.22570 + 1.87020i) q^{5} +(-3.70892 + 2.69469i) q^{6} +0.992398i q^{7} +(-0.427051 - 0.587785i) q^{8} +(-0.566541 - 1.74363i) q^{9} +(3.63597 - 2.91920i) q^{10} +(0.618034 - 1.90211i) q^{11} +(4.91027 - 1.59545i) q^{12} +(-3.20892 + 1.04264i) q^{13} +(0.639490 - 1.96815i) q^{14} +(1.74248 + 4.59680i) q^{15} +(-0.983224 - 3.02605i) q^{16} +(-1.70135 - 2.34171i) q^{17} +3.82309i q^{18} +(-2.09089 + 1.51912i) q^{19} +(-4.91027 + 1.86130i) q^{20} +(1.76510 + 1.28242i) q^{21} +(-2.45140 + 3.37406i) q^{22} +(4.32696 + 1.40591i) q^{23} -1.59730 q^{24} +(-1.99532 - 4.58462i) q^{25} +7.03588 q^{26} +(2.43930 + 0.792578i) q^{27} +(-1.36987 + 1.88546i) q^{28} +(-4.35599 - 3.16481i) q^{29} +(-0.493592 - 10.2393i) q^{30} +(-0.110461 + 0.0802548i) q^{31} +8.08800i q^{32} +(-2.58448 - 3.55723i) q^{33} +(1.86519 + 5.74046i) q^{34} +(-1.85599 - 1.21638i) q^{35} +(1.33047 - 4.09478i) q^{36} +(2.04392 - 0.664110i) q^{37} +(5.12561 - 1.66541i) q^{38} +(-2.29224 + 7.05479i) q^{39} +(1.62271 - 0.0782238i) q^{40} +(2.66780 + 8.21064i) q^{41} +(-2.67421 - 3.68073i) q^{42} -4.64398i q^{43} +(3.79981 - 2.76073i) q^{44} +(3.95536 + 1.07763i) q^{45} +(-7.67537 - 5.57648i) q^{46} +(5.83453 - 8.03054i) q^{47} +(-6.65275 - 2.16161i) q^{48} +6.01515 q^{49} +(1.00289 + 10.3781i) q^{50} -6.36356 q^{51} +(-7.53588 - 2.44856i) q^{52} +(-4.44672 + 6.12038i) q^{53} +(-4.32696 - 3.14372i) q^{54} +(2.79981 + 3.48727i) q^{55} +(0.583317 - 0.423805i) q^{56} +5.68196i q^{57} +(6.59953 + 9.08347i) q^{58} +(-1.51967 - 4.67706i) q^{59} +(-3.03472 + 11.1387i) q^{60} +(-0.855890 + 2.63416i) q^{61} +(0.270785 - 0.0879833i) q^{62} +(1.73038 - 0.562235i) q^{63} +(3.24537 - 9.98822i) q^{64} +(1.98322 - 7.27931i) q^{65} +(2.83337 + 8.72020i) q^{66} +(-1.28477 - 1.76833i) q^{67} -6.79751i q^{68} +(8.09205 - 5.87922i) q^{69} +(2.89701 + 3.60834i) q^{70} +(-7.80098 - 5.66774i) q^{71} +(-0.782941 + 1.07763i) q^{72} +(-0.737953 - 0.239775i) q^{73} -4.48150 q^{74} +(-10.7327 - 2.37552i) q^{75} -6.06943 q^{76} +(1.88765 + 0.613336i) q^{77} +(9.09205 - 12.5141i) q^{78} +(12.8236 + 9.31689i) q^{79} +(6.86447 + 1.87020i) q^{80} +(9.01153 - 6.54726i) q^{81} -18.0026i q^{82} +(-1.04103 - 1.43285i) q^{83} +(1.58332 + 4.87295i) q^{84} +(6.46482 - 0.311640i) q^{85} +(-2.99252 + 9.21004i) q^{86} +(-11.2580 + 3.65794i) q^{87} +(-1.38197 + 0.449028i) q^{88} +(-4.48322 + 13.7979i) q^{89} +(-7.14996 - 4.68596i) q^{90} +(-1.03472 - 3.18453i) q^{91} +(6.28015 + 8.64388i) q^{92} +0.300177i q^{93} +(-16.7460 + 12.1667i) q^{94} +(-0.278260 - 5.77237i) q^{95} +(14.3855 + 10.4516i) q^{96} +(-10.0095 + 13.7768i) q^{97} +(-11.9294 - 3.87609i) q^{98} -3.66673 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 5 q^{2} - 5 q^{3} - q^{4} - 9 q^{6} + 10 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 5 q^{2} - 5 q^{3} - q^{4} - 9 q^{6} + 10 q^{8} + q^{9} - 5 q^{10} - 4 q^{11} + 15 q^{12} - 5 q^{13} + 13 q^{14} + 15 q^{15} + 3 q^{16} - 10 q^{17} - 5 q^{19} - 15 q^{20} - 4 q^{21} + 5 q^{23} - 20 q^{24} - 10 q^{25} + 6 q^{26} - 5 q^{27} - 15 q^{28} - 5 q^{29} + 15 q^{30} - 9 q^{31} + 10 q^{33} + 13 q^{34} + 15 q^{35} + 23 q^{36} + 30 q^{37} + 15 q^{38} - 3 q^{39} + 10 q^{40} - 4 q^{41} - 15 q^{42} - 2 q^{44} - 15 q^{45} - 19 q^{46} - 30 q^{48} + 14 q^{49} - 15 q^{50} - 4 q^{51} - 10 q^{52} - 10 q^{53} - 5 q^{54} - 10 q^{55} + 10 q^{56} + 20 q^{58} - 10 q^{60} - 9 q^{61} - 30 q^{62} + 10 q^{63} + 4 q^{64} + 5 q^{65} + 12 q^{66} + 20 q^{67} + 17 q^{69} + 30 q^{70} + 6 q^{71} + 5 q^{72} + 15 q^{73} - 12 q^{74} - 10 q^{75} - 20 q^{76} + 10 q^{77} + 25 q^{78} + 15 q^{79} + 20 q^{80} + 28 q^{81} - 45 q^{83} + 18 q^{84} - 15 q^{85} - 9 q^{86} - 20 q^{87} - 20 q^{88} - 25 q^{89} - 25 q^{90} + 6 q^{91} + 30 q^{92} - 27 q^{94} + 15 q^{95} + 16 q^{96} - 60 q^{97} - 10 q^{98} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/25\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.98322 0.644389i −1.40235 0.455652i −0.492401 0.870369i \(-0.663881\pi\)
−0.909950 + 0.414717i \(0.863881\pi\)
\(3\) 1.29224 1.77862i 0.746076 1.02689i −0.252170 0.967683i \(-0.581144\pi\)
0.998246 0.0592022i \(-0.0188557\pi\)
\(4\) 1.89991 + 1.38036i 0.949953 + 0.690182i
\(5\) −1.22570 + 1.87020i −0.548150 + 0.836380i
\(6\) −3.70892 + 2.69469i −1.51416 + 1.10010i
\(7\) 0.992398i 0.375091i 0.982256 + 0.187546i \(0.0600533\pi\)
−0.982256 + 0.187546i \(0.939947\pi\)
\(8\) −0.427051 0.587785i −0.150985 0.207813i
\(9\) −0.566541 1.74363i −0.188847 0.581211i
\(10\) 3.63597 2.91920i 1.14980 0.923134i
\(11\) 0.618034 1.90211i 0.186344 0.573509i −0.813625 0.581390i \(-0.802509\pi\)
0.999969 + 0.00788181i \(0.00250889\pi\)
\(12\) 4.91027 1.59545i 1.41747 0.460565i
\(13\) −3.20892 + 1.04264i −0.889995 + 0.289177i −0.718101 0.695938i \(-0.754989\pi\)
−0.171894 + 0.985115i \(0.554989\pi\)
\(14\) 0.639490 1.96815i 0.170911 0.526010i
\(15\) 1.74248 + 4.59680i 0.449905 + 1.18689i
\(16\) −0.983224 3.02605i −0.245806 0.756513i
\(17\) −1.70135 2.34171i −0.412638 0.567948i 0.551221 0.834359i \(-0.314162\pi\)
−0.963859 + 0.266411i \(0.914162\pi\)
\(18\) 3.82309i 0.901111i
\(19\) −2.09089 + 1.51912i −0.479683 + 0.348510i −0.801203 0.598393i \(-0.795806\pi\)
0.321520 + 0.946903i \(0.395806\pi\)
\(20\) −4.91027 + 1.86130i −1.09797 + 0.416200i
\(21\) 1.76510 + 1.28242i 0.385176 + 0.279847i
\(22\) −2.45140 + 3.37406i −0.522640 + 0.719352i
\(23\) 4.32696 + 1.40591i 0.902233 + 0.293153i 0.723158 0.690682i \(-0.242690\pi\)
0.179075 + 0.983835i \(0.442690\pi\)
\(24\) −1.59730 −0.326047
\(25\) −1.99532 4.58462i −0.399064 0.916923i
\(26\) 7.03588 1.37985
\(27\) 2.43930 + 0.792578i 0.469444 + 0.152532i
\(28\) −1.36987 + 1.88546i −0.258881 + 0.356319i
\(29\) −4.35599 3.16481i −0.808886 0.587690i 0.104621 0.994512i \(-0.466637\pi\)
−0.913508 + 0.406822i \(0.866637\pi\)
\(30\) −0.493592 10.2393i −0.0901172 1.86944i
\(31\) −0.110461 + 0.0802548i −0.0198394 + 0.0144142i −0.597661 0.801749i \(-0.703903\pi\)
0.577821 + 0.816163i \(0.303903\pi\)
\(32\) 8.08800i 1.42977i
\(33\) −2.58448 3.55723i −0.449901 0.619235i
\(34\) 1.86519 + 5.74046i 0.319877 + 0.984482i
\(35\) −1.85599 1.21638i −0.313719 0.205606i
\(36\) 1.33047 4.09478i 0.221746 0.682463i
\(37\) 2.04392 0.664110i 0.336018 0.109179i −0.136148 0.990689i \(-0.543472\pi\)
0.472166 + 0.881510i \(0.343472\pi\)
\(38\) 5.12561 1.66541i 0.831483 0.270165i
\(39\) −2.29224 + 7.05479i −0.367052 + 1.12967i
\(40\) 1.62271 0.0782238i 0.256574 0.0123683i
\(41\) 2.66780 + 8.21064i 0.416640 + 1.28229i 0.910776 + 0.412902i \(0.135485\pi\)
−0.494135 + 0.869385i \(0.664515\pi\)
\(42\) −2.67421 3.68073i −0.412639 0.567949i
\(43\) 4.64398i 0.708200i −0.935208 0.354100i \(-0.884787\pi\)
0.935208 0.354100i \(-0.115213\pi\)
\(44\) 3.79981 2.76073i 0.572843 0.416195i
\(45\) 3.95536 + 1.07763i 0.589630 + 0.160643i
\(46\) −7.67537 5.57648i −1.13167 0.822208i
\(47\) 5.83453 8.03054i 0.851054 1.17137i −0.132576 0.991173i \(-0.542325\pi\)
0.983630 0.180202i \(-0.0576752\pi\)
\(48\) −6.65275 2.16161i −0.960242 0.312001i
\(49\) 6.01515 0.859306
\(50\) 1.00289 + 10.3781i 0.141830 + 1.46768i
\(51\) −6.36356 −0.891077
\(52\) −7.53588 2.44856i −1.04504 0.339554i
\(53\) −4.44672 + 6.12038i −0.610804 + 0.840699i −0.996643 0.0818665i \(-0.973912\pi\)
0.385839 + 0.922566i \(0.373912\pi\)
\(54\) −4.32696 3.14372i −0.588824 0.427806i
\(55\) 2.79981 + 3.48727i 0.377527 + 0.470223i
\(56\) 0.583317 0.423805i 0.0779490 0.0566333i
\(57\) 5.68196i 0.752594i
\(58\) 6.59953 + 9.08347i 0.866561 + 1.19272i
\(59\) −1.51967 4.67706i −0.197844 0.608901i −0.999932 0.0116948i \(-0.996277\pi\)
0.802088 0.597206i \(-0.203723\pi\)
\(60\) −3.03472 + 11.1387i −0.391780 + 1.43801i
\(61\) −0.855890 + 2.63416i −0.109585 + 0.337269i −0.990779 0.135486i \(-0.956740\pi\)
0.881194 + 0.472755i \(0.156740\pi\)
\(62\) 0.270785 0.0879833i 0.0343897 0.0111739i
\(63\) 1.73038 0.562235i 0.218007 0.0708349i
\(64\) 3.24537 9.98822i 0.405671 1.24853i
\(65\) 1.98322 7.27931i 0.245989 0.902887i
\(66\) 2.83337 + 8.72020i 0.348763 + 1.07338i
\(67\) −1.28477 1.76833i −0.156959 0.216036i 0.723294 0.690540i \(-0.242627\pi\)
−0.880253 + 0.474505i \(0.842627\pi\)
\(68\) 6.79751i 0.824319i
\(69\) 8.09205 5.87922i 0.974169 0.707775i
\(70\) 2.89701 + 3.60834i 0.346259 + 0.431279i
\(71\) −7.80098 5.66774i −0.925806 0.672637i 0.0191565 0.999816i \(-0.493902\pi\)
−0.944962 + 0.327179i \(0.893902\pi\)
\(72\) −0.782941 + 1.07763i −0.0922704 + 0.126999i
\(73\) −0.737953 0.239775i −0.0863708 0.0280636i 0.265513 0.964107i \(-0.414459\pi\)
−0.351884 + 0.936044i \(0.614459\pi\)
\(74\) −4.48150 −0.520963
\(75\) −10.7327 2.37552i −1.23931 0.274301i
\(76\) −6.06943 −0.696212
\(77\) 1.88765 + 0.613336i 0.215118 + 0.0698961i
\(78\) 9.09205 12.5141i 1.02947 1.41695i
\(79\) 12.8236 + 9.31689i 1.44277 + 1.04823i 0.987455 + 0.157900i \(0.0504725\pi\)
0.455313 + 0.890332i \(0.349527\pi\)
\(80\) 6.86447 + 1.87020i 0.767471 + 0.209095i
\(81\) 9.01153 6.54726i 1.00128 0.727474i
\(82\) 18.0026i 1.98806i
\(83\) −1.04103 1.43285i −0.114268 0.157276i 0.748052 0.663640i \(-0.230989\pi\)
−0.862320 + 0.506364i \(0.830989\pi\)
\(84\) 1.58332 + 4.87295i 0.172754 + 0.531682i
\(85\) 6.46482 0.311640i 0.701208 0.0338021i
\(86\) −2.99252 + 9.21004i −0.322692 + 0.993144i
\(87\) −11.2580 + 3.65794i −1.20698 + 0.392172i
\(88\) −1.38197 + 0.449028i −0.147318 + 0.0478665i
\(89\) −4.48322 + 13.7979i −0.475221 + 1.46258i 0.370439 + 0.928857i \(0.379207\pi\)
−0.845660 + 0.533722i \(0.820793\pi\)
\(90\) −7.14996 4.68596i −0.753671 0.493944i
\(91\) −1.03472 3.18453i −0.108468 0.333830i
\(92\) 6.28015 + 8.64388i 0.654750 + 0.901187i
\(93\) 0.300177i 0.0311269i
\(94\) −16.7460 + 12.1667i −1.72721 + 1.25490i
\(95\) −0.278260 5.77237i −0.0285489 0.592233i
\(96\) 14.3855 + 10.4516i 1.46821 + 1.06672i
\(97\) −10.0095 + 13.7768i −1.01631 + 1.39883i −0.101545 + 0.994831i \(0.532379\pi\)
−0.914761 + 0.403995i \(0.867621\pi\)
\(98\) −11.9294 3.87609i −1.20505 0.391544i
\(99\) −3.66673 −0.368520
\(100\) 2.53751 11.4646i 0.253751 1.14646i
\(101\) −2.54716 −0.253452 −0.126726 0.991938i \(-0.540447\pi\)
−0.126726 + 0.991938i \(0.540447\pi\)
\(102\) 12.6204 + 4.10060i 1.24960 + 0.406020i
\(103\) −5.97509 + 8.22400i −0.588743 + 0.810335i −0.994620 0.103593i \(-0.966966\pi\)
0.405877 + 0.913928i \(0.366966\pi\)
\(104\) 1.98322 + 1.44090i 0.194471 + 0.141292i
\(105\) −4.56186 + 1.72923i −0.445192 + 0.168756i
\(106\) 12.7627 9.27268i 1.23963 0.900642i
\(107\) 4.81720i 0.465697i −0.972513 0.232848i \(-0.925195\pi\)
0.972513 0.232848i \(-0.0748046\pi\)
\(108\) 3.54040 + 4.87295i 0.340676 + 0.468900i
\(109\) −5.02903 15.4778i −0.481694 1.48250i −0.836713 0.547642i \(-0.815526\pi\)
0.355019 0.934859i \(-0.384474\pi\)
\(110\) −3.30550 8.72020i −0.315167 0.831439i
\(111\) 1.46004 4.49354i 0.138581 0.426508i
\(112\) 3.00305 0.975750i 0.283762 0.0921997i
\(113\) 6.42633 2.08804i 0.604538 0.196426i 0.00927487 0.999957i \(-0.497048\pi\)
0.595264 + 0.803531i \(0.297048\pi\)
\(114\) 3.66139 11.2686i 0.342921 1.05540i
\(115\) −7.93290 + 6.36906i −0.739746 + 0.593918i
\(116\) −3.90738 12.0257i −0.362791 1.11656i
\(117\) 3.63597 + 5.00449i 0.336146 + 0.462665i
\(118\) 10.2549i 0.944041i
\(119\) 2.32391 1.68842i 0.213032 0.154777i
\(120\) 1.95781 2.98727i 0.178723 0.272699i
\(121\) 5.66312 + 4.11450i 0.514829 + 0.374045i
\(122\) 3.39484 4.67260i 0.307355 0.423037i
\(123\) 18.0510 + 5.86513i 1.62761 + 0.528841i
\(124\) −0.320647 −0.0287950
\(125\) 11.0198 + 1.88771i 0.985643 + 0.168842i
\(126\) −3.79403 −0.337999
\(127\) −1.41785 0.460687i −0.125814 0.0408793i 0.245433 0.969413i \(-0.421070\pi\)
−0.371247 + 0.928534i \(0.621070\pi\)
\(128\) −3.36457 + 4.63093i −0.297389 + 0.409320i
\(129\) −8.25985 6.00114i −0.727240 0.528370i
\(130\) −8.62388 + 13.1585i −0.756364 + 1.15408i
\(131\) −11.4190 + 8.29640i −0.997684 + 0.724860i −0.961590 0.274489i \(-0.911491\pi\)
−0.0360934 + 0.999348i \(0.511491\pi\)
\(132\) 10.3259i 0.898757i
\(133\) −1.50757 2.07500i −0.130723 0.179925i
\(134\) 1.40849 + 4.33488i 0.121675 + 0.374476i
\(135\) −4.47214 + 3.59053i −0.384900 + 0.309024i
\(136\) −0.649858 + 2.00006i −0.0557249 + 0.171504i
\(137\) 0.655703 0.213051i 0.0560205 0.0182022i −0.280873 0.959745i \(-0.590624\pi\)
0.336893 + 0.941543i \(0.390624\pi\)
\(138\) −19.8369 + 6.44539i −1.68863 + 0.548668i
\(139\) 5.12099 15.7608i 0.434356 1.33681i −0.459388 0.888236i \(-0.651931\pi\)
0.893745 0.448576i \(-0.148069\pi\)
\(140\) −1.84715 4.87295i −0.156113 0.411839i
\(141\) −6.74364 20.7548i −0.567917 1.74787i
\(142\) 11.8189 + 16.2673i 0.991817 + 1.36512i
\(143\) 6.74812i 0.564307i
\(144\) −4.71929 + 3.42877i −0.393274 + 0.285731i
\(145\) 11.2580 4.26747i 0.934923 0.354394i
\(146\) 1.30902 + 0.951057i 0.108335 + 0.0787100i
\(147\) 7.77302 10.6986i 0.641108 0.882409i
\(148\) 4.79997 + 1.55961i 0.394555 + 0.128199i
\(149\) −3.21156 −0.263101 −0.131551 0.991309i \(-0.541996\pi\)
−0.131551 + 0.991309i \(0.541996\pi\)
\(150\) 19.7546 + 11.6272i 1.61296 + 0.949358i
\(151\) 17.6863 1.43929 0.719647 0.694340i \(-0.244304\pi\)
0.719647 + 0.694340i \(0.244304\pi\)
\(152\) 1.78583 + 0.580252i 0.144850 + 0.0470647i
\(153\) −3.11920 + 4.29321i −0.252172 + 0.347085i
\(154\) −3.34841 2.43277i −0.269823 0.196038i
\(155\) −0.0147004 0.304953i −0.00118077 0.0244944i
\(156\) −14.0932 + 10.2393i −1.12836 + 0.819802i
\(157\) 1.65512i 0.132093i 0.997817 + 0.0660465i \(0.0210386\pi\)
−0.997817 + 0.0660465i \(0.978961\pi\)
\(158\) −19.4284 26.7409i −1.54564 2.12739i
\(159\) 5.13959 + 15.8180i 0.407596 + 1.25445i
\(160\) −15.1262 9.91346i −1.19583 0.783728i
\(161\) −1.39523 + 4.29407i −0.109959 + 0.338420i
\(162\) −22.0909 + 7.17776i −1.73562 + 0.563938i
\(163\) 0.849231 0.275932i 0.0665169 0.0216127i −0.275570 0.961281i \(-0.588866\pi\)
0.342086 + 0.939668i \(0.388866\pi\)
\(164\) −6.26510 + 19.2820i −0.489222 + 1.50567i
\(165\) 9.82055 0.473405i 0.764529 0.0368545i
\(166\) 1.14128 + 3.51249i 0.0885803 + 0.272622i
\(167\) −3.05388 4.20331i −0.236317 0.325262i 0.674344 0.738417i \(-0.264427\pi\)
−0.910660 + 0.413156i \(0.864427\pi\)
\(168\) 1.58516i 0.122297i
\(169\) −1.30713 + 0.949687i −0.100549 + 0.0730529i
\(170\) −13.0220 3.54780i −0.998742 0.272104i
\(171\) 3.83337 + 2.78510i 0.293145 + 0.212982i
\(172\) 6.41037 8.82312i 0.488786 0.672757i
\(173\) 5.48250 + 1.78137i 0.416827 + 0.135435i 0.509919 0.860222i \(-0.329675\pi\)
−0.0930924 + 0.995657i \(0.529675\pi\)
\(174\) 24.6842 1.87130
\(175\) 4.54977 1.98015i 0.343930 0.149685i
\(176\) −6.36356 −0.479671
\(177\) −10.2825 3.34098i −0.772878 0.251123i
\(178\) 17.7825 24.4755i 1.33285 1.83451i
\(179\) 7.01326 + 5.09543i 0.524196 + 0.380850i 0.818182 0.574959i \(-0.194982\pi\)
−0.293986 + 0.955810i \(0.594982\pi\)
\(180\) 6.02730 + 7.50722i 0.449249 + 0.559555i
\(181\) −11.5616 + 8.39996i −0.859363 + 0.624364i −0.927712 0.373297i \(-0.878227\pi\)
0.0683483 + 0.997662i \(0.478227\pi\)
\(182\) 6.98240i 0.517570i
\(183\) 3.57914 + 4.92627i 0.264578 + 0.364160i
\(184\) −1.02146 3.14372i −0.0753027 0.231758i
\(185\) −1.26321 + 4.63655i −0.0928732 + 0.340886i
\(186\) 0.193431 0.595318i 0.0141830 0.0436508i
\(187\) −5.50569 + 1.78891i −0.402616 + 0.130818i
\(188\) 22.1701 7.20351i 1.61692 0.525370i
\(189\) −0.786553 + 2.42076i −0.0572133 + 0.176084i
\(190\) −3.16780 + 11.6272i −0.229816 + 0.843527i
\(191\) −0.391326 1.20438i −0.0283154 0.0871458i 0.935900 0.352265i \(-0.114589\pi\)
−0.964216 + 0.265120i \(0.914589\pi\)
\(192\) −13.5714 18.6795i −0.979433 1.34807i
\(193\) 21.1730i 1.52406i −0.647540 0.762031i \(-0.724202\pi\)
0.647540 0.762031i \(-0.275798\pi\)
\(194\) 28.7286 20.8726i 2.06260 1.49856i
\(195\) −10.3843 12.9340i −0.743635 0.926224i
\(196\) 11.4282 + 8.30308i 0.816301 + 0.593077i
\(197\) −7.17176 + 9.87108i −0.510967 + 0.703285i −0.984082 0.177715i \(-0.943129\pi\)
0.473115 + 0.881001i \(0.343129\pi\)
\(198\) 7.27195 + 2.36280i 0.516795 + 0.167917i
\(199\) −10.4065 −0.737695 −0.368848 0.929490i \(-0.620248\pi\)
−0.368848 + 0.929490i \(0.620248\pi\)
\(200\) −1.84267 + 3.13068i −0.130296 + 0.221373i
\(201\) −4.80540 −0.338947
\(202\) 5.05159 + 1.64136i 0.355429 + 0.115486i
\(203\) 3.14075 4.32287i 0.220438 0.303406i
\(204\) −12.0902 8.78402i −0.846481 0.615005i
\(205\) −18.6255 5.07446i −1.30086 0.354415i
\(206\) 17.1494 12.4598i 1.19485 0.868113i
\(207\) 8.34114i 0.579749i
\(208\) 6.31018 + 8.68522i 0.437532 + 0.602212i
\(209\) 1.59730 + 4.91598i 0.110487 + 0.340045i
\(210\) 10.1615 0.489840i 0.701209 0.0338022i
\(211\) −2.67537 + 8.23395i −0.184180 + 0.566848i −0.999933 0.0115520i \(-0.996323\pi\)
0.815753 + 0.578400i \(0.196323\pi\)
\(212\) −16.8967 + 5.49007i −1.16047 + 0.377060i
\(213\) −20.1615 + 6.55086i −1.38144 + 0.448858i
\(214\) −3.10415 + 9.55359i −0.212195 + 0.653070i
\(215\) 8.68518 + 5.69212i 0.592324 + 0.388199i
\(216\) −0.575842 1.77226i −0.0391811 0.120587i
\(217\) −0.0796448 0.109622i −0.00540664 0.00744160i
\(218\) 33.9365i 2.29847i
\(219\) −1.38008 + 1.00269i −0.0932573 + 0.0677554i
\(220\) 0.505688 + 10.4902i 0.0340935 + 0.707252i
\(221\) 7.90107 + 5.74046i 0.531484 + 0.386145i
\(222\) −5.79117 + 7.97087i −0.388678 + 0.534970i
\(223\) −26.9562 8.75859i −1.80512 0.586518i −0.805139 0.593086i \(-0.797909\pi\)
−0.999978 + 0.00656747i \(0.997909\pi\)
\(224\) −8.02652 −0.536295
\(225\) −6.86346 + 6.07648i −0.457564 + 0.405099i
\(226\) −14.0904 −0.937277
\(227\) 21.1529 + 6.87299i 1.40397 + 0.456176i 0.910471 0.413572i \(-0.135719\pi\)
0.493495 + 0.869749i \(0.335719\pi\)
\(228\) −7.84317 + 10.7952i −0.519427 + 0.714929i
\(229\) 2.00280 + 1.45512i 0.132348 + 0.0961568i 0.651990 0.758228i \(-0.273934\pi\)
−0.519641 + 0.854384i \(0.673934\pi\)
\(230\) 19.8369 7.51941i 1.30800 0.495815i
\(231\) 3.53019 2.56484i 0.232270 0.168754i
\(232\) 3.91192i 0.256830i
\(233\) 3.50088 + 4.81854i 0.229350 + 0.315673i 0.908146 0.418654i \(-0.137498\pi\)
−0.678796 + 0.734327i \(0.737498\pi\)
\(234\) −3.98612 12.2680i −0.260581 0.801985i
\(235\) 7.86736 + 20.7548i 0.513210 + 1.35389i
\(236\) 3.56881 10.9837i 0.232310 0.714976i
\(237\) 33.1424 10.7686i 2.15283 0.699496i
\(238\) −5.69683 + 1.85101i −0.369271 + 0.119983i
\(239\) 2.17314 6.68823i 0.140569 0.432626i −0.855846 0.517231i \(-0.826963\pi\)
0.996415 + 0.0846050i \(0.0269628\pi\)
\(240\) 12.1969 9.79251i 0.787308 0.632104i
\(241\) 0.364567 + 1.12202i 0.0234838 + 0.0722758i 0.962112 0.272656i \(-0.0879021\pi\)
−0.938628 + 0.344932i \(0.887902\pi\)
\(242\) −8.57990 11.8092i −0.551537 0.759125i
\(243\) 16.7942i 1.07735i
\(244\) −5.26220 + 3.82322i −0.336878 + 0.244756i
\(245\) −7.37276 + 11.2495i −0.471029 + 0.718707i
\(246\) −32.0198 23.2637i −2.04151 1.48324i
\(247\) 5.12561 7.05479i 0.326135 0.448886i
\(248\) 0.0943452 + 0.0306546i 0.00599093 + 0.00194657i
\(249\) −3.89375 −0.246757
\(250\) −20.6384 10.8448i −1.30528 0.685885i
\(251\) 4.60867 0.290897 0.145448 0.989366i \(-0.453538\pi\)
0.145448 + 0.989366i \(0.453538\pi\)
\(252\) 4.06365 + 1.32036i 0.255986 + 0.0831748i
\(253\) 5.34841 7.36146i 0.336252 0.462811i
\(254\) 2.51505 + 1.82729i 0.157808 + 0.114654i
\(255\) 7.79981 11.9011i 0.488443 0.745279i
\(256\) −7.33616 + 5.33003i −0.458510 + 0.333127i
\(257\) 9.75542i 0.608526i −0.952588 0.304263i \(-0.901590\pi\)
0.952588 0.304263i \(-0.0984102\pi\)
\(258\) 12.5141 + 17.2242i 0.779092 + 1.07233i
\(259\) 0.659062 + 2.02838i 0.0409521 + 0.126038i
\(260\) 13.8160 11.0924i 0.856834 0.687924i
\(261\) −3.05043 + 9.38824i −0.188817 + 0.581118i
\(262\) 27.9926 9.09534i 1.72939 0.561912i
\(263\) 0.947088 0.307728i 0.0584000 0.0189753i −0.279671 0.960096i \(-0.590225\pi\)
0.338071 + 0.941121i \(0.390225\pi\)
\(264\) −0.987184 + 3.03824i −0.0607570 + 0.186991i
\(265\) −5.99602 15.8180i −0.368333 0.971693i
\(266\) 1.65275 + 5.08664i 0.101337 + 0.311882i
\(267\) 18.7479 + 25.8042i 1.14735 + 1.57919i
\(268\) 5.13310i 0.313554i
\(269\) −2.66048 + 1.93295i −0.162212 + 0.117854i −0.665930 0.746014i \(-0.731965\pi\)
0.503718 + 0.863868i \(0.331965\pi\)
\(270\) 11.1829 4.23903i 0.680572 0.257979i
\(271\) −9.82960 7.14162i −0.597105 0.433823i 0.247745 0.968825i \(-0.420311\pi\)
−0.844850 + 0.535003i \(0.820311\pi\)
\(272\) −5.41332 + 7.45080i −0.328231 + 0.451771i
\(273\) −7.00116 2.27482i −0.423730 0.137678i
\(274\) −1.43769 −0.0868543
\(275\) −9.95363 + 0.961876i −0.600227 + 0.0580033i
\(276\) 23.4896 1.41391
\(277\) −11.2858 3.66697i −0.678096 0.220327i −0.0503346 0.998732i \(-0.516029\pi\)
−0.627762 + 0.778406i \(0.716029\pi\)
\(278\) −20.3121 + 27.9572i −1.21824 + 1.67676i
\(279\) 0.202516 + 0.147136i 0.0121243 + 0.00880883i
\(280\) 0.0776292 + 1.61038i 0.00463923 + 0.0962386i
\(281\) 19.9355 14.4840i 1.18925 0.864041i 0.196066 0.980591i \(-0.437183\pi\)
0.993185 + 0.116549i \(0.0371833\pi\)
\(282\) 45.5069i 2.70990i
\(283\) −1.97697 2.72107i −0.117519 0.161751i 0.746205 0.665716i \(-0.231874\pi\)
−0.863724 + 0.503965i \(0.831874\pi\)
\(284\) −6.99759 21.5364i −0.415231 1.27795i
\(285\) −10.6264 6.96438i −0.629455 0.412534i
\(286\) 4.34841 13.3830i 0.257127 0.791356i
\(287\) −8.14823 + 2.64752i −0.480975 + 0.156278i
\(288\) 14.1025 4.58219i 0.830999 0.270008i
\(289\) 2.66428 8.19982i 0.156723 0.482342i
\(290\) −25.0770 + 1.20885i −1.47257 + 0.0709861i
\(291\) 11.5691 + 35.6060i 0.678192 + 2.08726i
\(292\) −1.07106 1.47419i −0.0626793 0.0862707i
\(293\) 8.96340i 0.523647i 0.965116 + 0.261824i \(0.0843239\pi\)
−0.965116 + 0.261824i \(0.915676\pi\)
\(294\) −22.3097 + 16.2090i −1.30113 + 0.945326i
\(295\) 10.6097 + 2.89058i 0.617721 + 0.168296i
\(296\) −1.26321 0.917777i −0.0734227 0.0533447i
\(297\) 3.01515 4.14999i 0.174956 0.240807i
\(298\) 6.36925 + 2.06949i 0.368961 + 0.119883i
\(299\) −15.3507 −0.887756
\(300\) −17.1121 19.3283i −0.987966 1.11592i
\(301\) 4.60867 0.265640
\(302\) −35.0760 11.3969i −2.01840 0.655817i
\(303\) −3.29155 + 4.53042i −0.189094 + 0.260266i
\(304\) 6.65275 + 4.83351i 0.381561 + 0.277221i
\(305\) −3.87735 4.82937i −0.222016 0.276529i
\(306\) 8.95256 6.50442i 0.511784 0.371833i
\(307\) 9.48133i 0.541128i 0.962702 + 0.270564i \(0.0872102\pi\)
−0.962702 + 0.270564i \(0.912790\pi\)
\(308\) 2.73974 + 3.77093i 0.156111 + 0.214869i
\(309\) 6.90610 + 21.2548i 0.392874 + 1.20914i
\(310\) −0.167354 + 0.614264i −0.00950508 + 0.0348878i
\(311\) 9.06409 27.8964i 0.513978 1.58186i −0.271157 0.962535i \(-0.587406\pi\)
0.785135 0.619325i \(-0.212594\pi\)
\(312\) 5.12561 1.66541i 0.290180 0.0942853i
\(313\) 17.9655 5.83735i 1.01547 0.329947i 0.246440 0.969158i \(-0.420739\pi\)
0.769031 + 0.639212i \(0.220739\pi\)
\(314\) 1.06654 3.28248i 0.0601884 0.185241i
\(315\) −1.06943 + 3.92529i −0.0602558 + 0.221165i
\(316\) 11.5030 + 35.4024i 0.647092 + 1.99154i
\(317\) −13.3952 18.4369i −0.752351 1.03552i −0.997812 0.0661157i \(-0.978939\pi\)
0.245461 0.969406i \(-0.421061\pi\)
\(318\) 34.6826i 1.94490i
\(319\) −8.71197 + 6.32962i −0.487777 + 0.354391i
\(320\) 14.7021 + 18.3121i 0.821875 + 1.02367i
\(321\) −8.56796 6.22499i −0.478217 0.347445i
\(322\) 5.53409 7.61703i 0.308403 0.424480i
\(323\) 7.11468 + 2.31170i 0.395871 + 0.128626i
\(324\) 26.1587 1.45326
\(325\) 11.1829 + 12.6313i 0.620318 + 0.700657i
\(326\) −1.86202 −0.103128
\(327\) −34.0277 11.0563i −1.88174 0.611414i
\(328\) 3.68681 5.07446i 0.203570 0.280190i
\(329\) 7.96950 + 5.79018i 0.439373 + 0.319223i
\(330\) −19.7814 5.38938i −1.08893 0.296676i
\(331\) −2.39711 + 1.74160i −0.131757 + 0.0957272i −0.651712 0.758467i \(-0.725949\pi\)
0.519955 + 0.854194i \(0.325949\pi\)
\(332\) 4.15928i 0.228270i
\(333\) −2.31593 3.18760i −0.126912 0.174680i
\(334\) 3.34797 + 10.3040i 0.183193 + 0.563809i
\(335\) 4.88187 0.235333i 0.266725 0.0128576i
\(336\) 2.14518 6.60218i 0.117029 0.360178i
\(337\) 17.8916 5.81332i 0.974615 0.316672i 0.221937 0.975061i \(-0.428762\pi\)
0.752678 + 0.658389i \(0.228762\pi\)
\(338\) 3.20430 1.04114i 0.174291 0.0566306i
\(339\) 4.59054 14.1282i 0.249324 0.767340i
\(340\) 12.7127 + 8.33171i 0.689444 + 0.451850i
\(341\) 0.0843849 + 0.259710i 0.00456970 + 0.0140641i
\(342\) −5.80773 7.99366i −0.314046 0.432248i
\(343\) 12.9162i 0.697410i
\(344\) −2.72966 + 1.98321i −0.147173 + 0.106928i
\(345\) 1.07691 + 22.3399i 0.0579788 + 1.20274i
\(346\) −9.72514 7.06573i −0.522827 0.379856i
\(347\) −13.3652 + 18.3956i −0.717480 + 0.987526i 0.282124 + 0.959378i \(0.408961\pi\)
−0.999604 + 0.0281483i \(0.991039\pi\)
\(348\) −26.4384 8.59035i −1.41725 0.460491i
\(349\) −1.93849 −0.103765 −0.0518824 0.998653i \(-0.516522\pi\)
−0.0518824 + 0.998653i \(0.516522\pi\)
\(350\) −10.2992 + 0.995269i −0.550515 + 0.0531994i
\(351\) −8.65392 −0.461912
\(352\) 15.3843 + 4.99866i 0.819986 + 0.266430i
\(353\) −3.08555 + 4.24689i −0.164227 + 0.226039i −0.883197 0.469002i \(-0.844614\pi\)
0.718970 + 0.695041i \(0.244614\pi\)
\(354\) 18.2396 + 13.2518i 0.969422 + 0.704326i
\(355\) 20.1615 7.64246i 1.07006 0.405620i
\(356\) −27.5639 + 20.0263i −1.46088 + 1.06139i
\(357\) 6.31519i 0.334235i
\(358\) −10.6254 14.6246i −0.561571 0.772937i
\(359\) −6.98184 21.4879i −0.368488 1.13409i −0.947768 0.318960i \(-0.896666\pi\)
0.579281 0.815128i \(-0.303334\pi\)
\(360\) −1.05573 2.78510i −0.0556418 0.146788i
\(361\) −3.80723 + 11.7174i −0.200380 + 0.616708i
\(362\) 28.3420 9.20887i 1.48962 0.484007i
\(363\) 14.6362 4.75560i 0.768203 0.249604i
\(364\) 2.42994 7.47860i 0.127364 0.391985i
\(365\) 1.35294 1.08623i 0.0708160 0.0568558i
\(366\) −3.92381 12.0762i −0.205101 0.631236i
\(367\) 4.29008 + 5.90479i 0.223940 + 0.308228i 0.906173 0.422908i \(-0.138991\pi\)
−0.682232 + 0.731136i \(0.738991\pi\)
\(368\) 14.4759i 0.754610i
\(369\) 12.8049 9.30333i 0.666598 0.484312i
\(370\) 5.49297 8.38131i 0.285566 0.435723i
\(371\) −6.07386 4.41292i −0.315339 0.229107i
\(372\) −0.414353 + 0.570308i −0.0214832 + 0.0295691i
\(373\) 21.2156 + 6.89335i 1.09850 + 0.356924i 0.801525 0.597961i \(-0.204022\pi\)
0.296975 + 0.954885i \(0.404022\pi\)
\(374\) 12.0718 0.624216
\(375\) 17.5978 17.1607i 0.908746 0.886173i
\(376\) −7.21188 −0.371924
\(377\) 17.2778 + 5.61390i 0.889852 + 0.289130i
\(378\) 3.11982 4.29407i 0.160466 0.220863i
\(379\) −26.6544 19.3655i −1.36914 0.994740i −0.997804 0.0662429i \(-0.978899\pi\)
−0.371339 0.928497i \(-0.621101\pi\)
\(380\) 7.43930 11.3511i 0.381628 0.582298i
\(381\) −2.65159 + 1.92649i −0.135845 + 0.0986971i
\(382\) 2.64072i 0.135111i
\(383\) −12.1673 16.7468i −0.621719 0.855722i 0.375758 0.926718i \(-0.377382\pi\)
−0.997477 + 0.0709955i \(0.977382\pi\)
\(384\) 3.88882 + 11.9686i 0.198450 + 0.610768i
\(385\) −3.46076 + 2.77853i −0.176377 + 0.141607i
\(386\) −13.6436 + 41.9907i −0.694441 + 2.13727i
\(387\) −8.09739 + 2.63100i −0.411614 + 0.133741i
\(388\) −38.0341 + 12.3580i −1.93089 + 0.627383i
\(389\) 0.353657 1.08844i 0.0179311 0.0551863i −0.941691 0.336480i \(-0.890764\pi\)
0.959622 + 0.281294i \(0.0907635\pi\)
\(390\) 12.2599 + 32.3426i 0.620802 + 1.63773i
\(391\) −4.06943 12.5244i −0.205800 0.633388i
\(392\) −2.56877 3.53561i −0.129743 0.178575i
\(393\) 31.0310i 1.56531i
\(394\) 20.5840 14.9552i 1.03701 0.753430i
\(395\) −33.1424 + 12.5630i −1.66757 + 0.632114i
\(396\) −6.96645 5.06142i −0.350077 0.254346i
\(397\) −2.75385 + 3.79035i −0.138212 + 0.190232i −0.872512 0.488593i \(-0.837510\pi\)
0.734300 + 0.678825i \(0.237510\pi\)
\(398\) 20.6384 + 6.70581i 1.03451 + 0.336132i
\(399\) −5.63877 −0.282292
\(400\) −11.9114 + 10.5456i −0.595572 + 0.527282i
\(401\) −24.0851 −1.20275 −0.601376 0.798966i \(-0.705381\pi\)
−0.601376 + 0.798966i \(0.705381\pi\)
\(402\) 9.53019 + 3.09655i 0.475323 + 0.154442i
\(403\) 0.270785 0.372703i 0.0134888 0.0185657i
\(404\) −4.83937 3.51601i −0.240768 0.174928i
\(405\) 1.19928 + 24.8784i 0.0595925 + 1.23622i
\(406\) −9.01443 + 6.54936i −0.447378 + 0.325039i
\(407\) 4.29821i 0.213054i
\(408\) 2.71756 + 3.74041i 0.134539 + 0.185178i
\(409\) 0.586930 + 1.80638i 0.0290218 + 0.0893199i 0.964518 0.264016i \(-0.0850472\pi\)
−0.935496 + 0.353336i \(0.885047\pi\)
\(410\) 33.6686 + 22.0658i 1.66277 + 1.08975i
\(411\) 0.468391 1.44156i 0.0231040 0.0711068i
\(412\) −22.7042 + 7.37705i −1.11856 + 0.363441i
\(413\) 4.64151 1.50812i 0.228394 0.0742096i
\(414\) −5.37494 + 16.5423i −0.264164 + 0.813012i
\(415\) 3.95571 0.190687i 0.194178 0.00936047i
\(416\) −8.43290 25.9538i −0.413457 1.27249i
\(417\) −21.4148 29.4750i −1.04869 1.44340i
\(418\) 10.7788i 0.527207i
\(419\) −1.88344 + 1.36840i −0.0920120 + 0.0668507i −0.632840 0.774283i \(-0.718111\pi\)
0.540828 + 0.841133i \(0.318111\pi\)
\(420\) −11.0541 3.01165i −0.539384 0.146953i
\(421\) 19.3760 + 14.0775i 0.944329 + 0.686095i 0.949459 0.313892i \(-0.101633\pi\)
−0.00513010 + 0.999987i \(0.501633\pi\)
\(422\) 10.6117 14.6058i 0.516571 0.710998i
\(423\) −17.3078 5.62366i −0.841536 0.273431i
\(424\) 5.49645 0.266931
\(425\) −7.34110 + 12.4725i −0.356095 + 0.605005i
\(426\) 44.2060 2.14179
\(427\) −2.61413 0.849384i −0.126507 0.0411045i
\(428\) 6.64949 9.15224i 0.321415 0.442390i
\(429\) 12.0023 + 8.72020i 0.579478 + 0.421015i
\(430\) −13.5567 16.8854i −0.653763 0.814285i
\(431\) −0.964563 + 0.700796i −0.0464614 + 0.0337562i −0.610774 0.791805i \(-0.709141\pi\)
0.564312 + 0.825561i \(0.309141\pi\)
\(432\) 8.16074i 0.392634i
\(433\) 15.0554 + 20.7220i 0.723518 + 0.995837i 0.999400 + 0.0346454i \(0.0110302\pi\)
−0.275882 + 0.961192i \(0.588970\pi\)
\(434\) 0.0873145 + 0.268726i 0.00419123 + 0.0128993i
\(435\) 6.95781 25.5382i 0.333601 1.22446i
\(436\) 11.8102 36.3482i 0.565608 1.74076i
\(437\) −11.1829 + 3.63356i −0.534953 + 0.173817i
\(438\) 3.38313 1.09925i 0.161652 0.0525240i
\(439\) −5.98693 + 18.4259i −0.285741 + 0.879420i 0.700435 + 0.713716i \(0.252989\pi\)
−0.986176 + 0.165703i \(0.947011\pi\)
\(440\) 0.854102 3.13493i 0.0407177 0.149452i
\(441\) −3.40783 10.4882i −0.162277 0.499439i
\(442\) −11.9705 16.4760i −0.569379 0.783683i
\(443\) 2.46263i 0.117003i 0.998287 + 0.0585016i \(0.0186323\pi\)
−0.998287 + 0.0585016i \(0.981368\pi\)
\(444\) 8.97666 6.52192i 0.426013 0.309517i
\(445\) −20.3099 25.2967i −0.962780 1.19918i
\(446\) 47.8162 + 34.7405i 2.26416 + 1.64501i
\(447\) −4.15011 + 5.71214i −0.196294 + 0.270175i
\(448\) 9.91229 + 3.22070i 0.468312 + 0.152164i
\(449\) 14.3585 0.677618 0.338809 0.940855i \(-0.389976\pi\)
0.338809 + 0.940855i \(0.389976\pi\)
\(450\) 17.5274 7.62829i 0.826249 0.359601i
\(451\) 17.2664 0.813041
\(452\) 15.0917 + 4.90359i 0.709853 + 0.230645i
\(453\) 22.8550 31.4572i 1.07382 1.47799i
\(454\) −37.5220 27.2614i −1.76100 1.27944i
\(455\) 7.22397 + 1.96815i 0.338665 + 0.0922682i
\(456\) 3.33977 2.42649i 0.156399 0.113631i
\(457\) 25.1964i 1.17864i 0.807901 + 0.589319i \(0.200604\pi\)
−0.807901 + 0.589319i \(0.799396\pi\)
\(458\) −3.03433 4.17640i −0.141785 0.195150i
\(459\) −2.29413 7.06059i −0.107081 0.329560i
\(460\) −23.8634 + 1.15035i −1.11264 + 0.0536352i
\(461\) 8.90758 27.4147i 0.414867 1.27683i −0.497502 0.867463i \(-0.665749\pi\)
0.912370 0.409367i \(-0.134251\pi\)
\(462\) −8.65392 + 2.81183i −0.402617 + 0.130818i
\(463\) −30.3193 + 9.85134i −1.40906 + 0.457831i −0.912108 0.409949i \(-0.865547\pi\)
−0.496949 + 0.867780i \(0.665547\pi\)
\(464\) −5.29397 + 16.2932i −0.245766 + 0.756391i
\(465\) −0.561392 0.367927i −0.0260339 0.0170622i
\(466\) −3.83801 11.8122i −0.177792 0.547189i
\(467\) 25.3333 + 34.8683i 1.17229 + 1.61351i 0.646580 + 0.762847i \(0.276199\pi\)
0.525706 + 0.850666i \(0.323801\pi\)
\(468\) 14.5270i 0.671512i
\(469\) 1.75489 1.27500i 0.0810331 0.0588740i
\(470\) −2.22859 46.2310i −0.102797 2.13248i
\(471\) 2.94383 + 2.13882i 0.135644 + 0.0985514i
\(472\) −2.10013 + 2.89058i −0.0966663 + 0.133050i
\(473\) −8.83337 2.87013i −0.406159 0.131969i
\(474\) −72.6679 −3.33775
\(475\) 11.1366 + 6.55479i 0.510981 + 0.300755i
\(476\) 6.74584 0.309195
\(477\) 13.1910 + 4.28600i 0.603973 + 0.196243i
\(478\) −8.61964 + 11.8639i −0.394253 + 0.542643i
\(479\) 17.0107 + 12.3590i 0.777237 + 0.564696i 0.904148 0.427218i \(-0.140506\pi\)
−0.126912 + 0.991914i \(0.540506\pi\)
\(480\) −37.1790 + 14.0931i −1.69698 + 0.643261i
\(481\) −5.86635 + 4.26216i −0.267483 + 0.194338i
\(482\) 2.46014i 0.112057i
\(483\) 5.83453 + 8.03054i 0.265480 + 0.365402i
\(484\) 5.07990 + 15.6343i 0.230904 + 0.710651i
\(485\) −13.4969 35.6060i −0.612862 1.61678i
\(486\) −10.8220 + 33.3067i −0.490895 + 1.51082i
\(487\) −26.5525 + 8.62744i −1.20321 + 0.390947i −0.840941 0.541127i \(-0.817998\pi\)
−0.362269 + 0.932073i \(0.617998\pi\)
\(488\) 1.91383 0.621840i 0.0866349 0.0281494i
\(489\) 0.606634 1.86703i 0.0274329 0.0844299i
\(490\) 21.8709 17.5594i 0.988027 0.793255i
\(491\) 4.62322 + 14.2288i 0.208643 + 0.642137i 0.999544 + 0.0301930i \(0.00961220\pi\)
−0.790901 + 0.611944i \(0.790388\pi\)
\(492\) 26.1993 + 36.0602i 1.18115 + 1.62572i
\(493\) 15.5849i 0.701909i
\(494\) −14.7113 + 10.6884i −0.661891 + 0.480892i
\(495\) 4.49431 6.85753i 0.202004 0.308223i
\(496\) 0.351464 + 0.255353i 0.0157812 + 0.0114657i
\(497\) 5.62466 7.74168i 0.252300 0.347262i
\(498\) 7.72218 + 2.50909i 0.346039 + 0.112435i
\(499\) 44.3253 1.98427 0.992137 0.125160i \(-0.0399443\pi\)
0.992137 + 0.125160i \(0.0399443\pi\)
\(500\) 18.3309 + 18.7978i 0.819784 + 0.840665i
\(501\) −11.4224 −0.510316
\(502\) −9.14003 2.96978i −0.407940 0.132548i
\(503\) 13.8842 19.1100i 0.619066 0.852071i −0.378219 0.925716i \(-0.623463\pi\)
0.997284 + 0.0736453i \(0.0234633\pi\)
\(504\) −1.06943 0.776989i −0.0476364 0.0346098i
\(505\) 3.12205 4.76371i 0.138930 0.211982i
\(506\) −15.3507 + 11.1530i −0.682424 + 0.495810i
\(507\) 3.55211i 0.157755i
\(508\) −2.05786 2.83241i −0.0913029 0.125668i
\(509\) 8.25552 + 25.4079i 0.365920 + 1.12618i 0.949403 + 0.314060i \(0.101689\pi\)
−0.583484 + 0.812125i \(0.698311\pi\)
\(510\) −23.1377 + 18.5765i −1.02456 + 0.822583i
\(511\) 0.237953 0.732343i 0.0105264 0.0323970i
\(512\) 28.8718 9.38103i 1.27597 0.414587i
\(513\) −6.30434 + 2.04840i −0.278343 + 0.0904392i
\(514\) −6.28628 + 19.3472i −0.277276 + 0.853367i
\(515\) −8.05689 21.2548i −0.355029 0.936598i
\(516\) −7.40921 22.8032i −0.326172 1.00385i
\(517\) −11.6691 16.0611i −0.513205 0.706366i
\(518\) 4.44743i 0.195409i
\(519\) 10.2531 7.44931i 0.450061 0.326988i
\(520\) −5.12561 + 1.94293i −0.224773 + 0.0852029i
\(521\) −26.4607 19.2249i −1.15927 0.842256i −0.169581 0.985516i \(-0.554241\pi\)
−0.989685 + 0.143260i \(0.954241\pi\)
\(522\) 12.0994 16.6533i 0.529574 0.728896i
\(523\) −0.224417 0.0729175i −0.00981307 0.00318846i 0.304106 0.952638i \(-0.401642\pi\)
−0.313919 + 0.949450i \(0.601642\pi\)
\(524\) −33.1471 −1.44804
\(525\) 2.35746 10.6511i 0.102888 0.464853i
\(526\) −2.07658 −0.0905434
\(527\) 0.375867 + 0.122127i 0.0163730 + 0.00531992i
\(528\) −8.22325 + 11.3183i −0.357871 + 0.492567i
\(529\) −1.86142 1.35240i −0.0809313 0.0588001i
\(530\) 1.69850 + 35.2344i 0.0737779 + 1.53049i
\(531\) −7.29413 + 5.29949i −0.316538 + 0.229978i
\(532\) 6.02330i 0.261143i
\(533\) −17.1215 23.5658i −0.741616 1.02075i
\(534\) −20.5533 63.2564i −0.889427 2.73737i
\(535\) 9.00915 + 5.90445i 0.389499 + 0.255271i
\(536\) −0.490737 + 1.51033i −0.0211966 + 0.0652364i
\(537\) 18.1256 5.88938i 0.782179 0.254145i
\(538\) 6.52190 2.11909i 0.281179 0.0913606i
\(539\) 3.71756 11.4415i 0.160127 0.492820i
\(540\) −13.4529 + 0.648503i −0.578920 + 0.0279071i
\(541\) −10.3698 31.9148i −0.445830 1.37213i −0.881570 0.472053i \(-0.843513\pi\)
0.435740 0.900073i \(-0.356487\pi\)
\(542\) 14.8923 + 20.4975i 0.639680 + 0.880443i
\(543\) 31.4183i 1.34829i
\(544\) 18.9397 13.7605i 0.812035 0.589978i
\(545\) 35.1106 + 9.56578i 1.50397 + 0.409753i
\(546\) 12.4190 + 9.02294i 0.531485 + 0.386146i
\(547\) 22.6371 31.1573i 0.967892 1.33219i 0.0247869 0.999693i \(-0.492109\pi\)
0.943105 0.332496i \(-0.107891\pi\)
\(548\) 1.53986 + 0.500332i 0.0657797 + 0.0213731i
\(549\) 5.07790 0.216720
\(550\) 20.3601 + 4.50639i 0.868158 + 0.192153i
\(551\) 13.9156 0.592825
\(552\) −6.91144 2.24566i −0.294170 0.0955818i
\(553\) −9.24607 + 12.7261i −0.393183 + 0.541170i
\(554\) 20.0193 + 14.5448i 0.850537 + 0.617951i
\(555\) 6.61426 + 8.23830i 0.280760 + 0.349697i
\(556\) 31.4850 22.8752i 1.33526 0.970124i
\(557\) 4.33445i 0.183657i 0.995775 + 0.0918283i \(0.0292711\pi\)
−0.995775 + 0.0918283i \(0.970729\pi\)
\(558\) −0.306821 0.422304i −0.0129888 0.0178775i
\(559\) 4.84201 + 14.9022i 0.204795 + 0.630294i
\(560\) −1.85599 + 6.81229i −0.0784298 + 0.287872i
\(561\) −3.93290 + 12.1042i −0.166047 + 0.511040i
\(562\) −48.8698 + 15.8788i −2.06145 + 0.669805i
\(563\) −33.1936 + 10.7853i −1.39894 + 0.454544i −0.908849 0.417125i \(-0.863038\pi\)
−0.490094 + 0.871669i \(0.663038\pi\)
\(564\) 15.8369 48.7408i 0.666852 2.05236i
\(565\) −3.97169 + 14.5779i −0.167090 + 0.613295i
\(566\) 2.16735 + 6.67043i 0.0911007 + 0.280379i
\(567\) 6.49749 + 8.94303i 0.272869 + 0.375572i
\(568\) 7.00572i 0.293953i
\(569\) −33.9501 + 24.6662i −1.42326 + 1.03406i −0.432038 + 0.901855i \(0.642205\pi\)
−0.991223 + 0.132204i \(0.957795\pi\)
\(570\) 16.5868 + 20.6595i 0.694745 + 0.865330i
\(571\) 11.1913 + 8.13093i 0.468340 + 0.340269i 0.796794 0.604251i \(-0.206528\pi\)
−0.328454 + 0.944520i \(0.606528\pi\)
\(572\) −9.31486 + 12.8208i −0.389474 + 0.536065i
\(573\) −2.64782 0.860328i −0.110614 0.0359407i
\(574\) 17.8658 0.745704
\(575\) −2.18809 22.6427i −0.0912497 0.944265i
\(576\) −19.2544 −0.802268
\(577\) 12.1538 + 3.94902i 0.505970 + 0.164400i 0.550869 0.834592i \(-0.314296\pi\)
−0.0448986 + 0.998992i \(0.514296\pi\)
\(578\) −10.5677 + 14.5453i −0.439560 + 0.605003i
\(579\) −37.6586 27.3606i −1.56504 1.13707i
\(580\) 27.2798 + 7.43228i 1.13273 + 0.308609i
\(581\) 1.42196 1.03311i 0.0589928 0.0428608i
\(582\) 78.0696i 3.23609i
\(583\) 8.89344 + 12.2408i 0.368329 + 0.506961i
\(584\) 0.174207 + 0.536154i 0.00720874 + 0.0221862i
\(585\) −13.8160 + 0.666009i −0.571222 + 0.0275361i
\(586\) 5.77591 17.7764i 0.238601 0.734337i
\(587\) −11.5905 + 3.76597i −0.478390 + 0.155438i −0.538279 0.842767i \(-0.680925\pi\)
0.0598889 + 0.998205i \(0.480925\pi\)
\(588\) 29.5360 9.59683i 1.21804 0.395767i
\(589\) 0.109046 0.335608i 0.00449315 0.0138285i
\(590\) −19.1788 12.5694i −0.789577 0.517476i
\(591\) 8.28923 + 25.5116i 0.340973 + 1.04941i
\(592\) −4.01926 5.53204i −0.165191 0.227365i
\(593\) 31.2580i 1.28361i −0.766866 0.641807i \(-0.778185\pi\)
0.766866 0.641807i \(-0.221815\pi\)
\(594\) −8.65392 + 6.28744i −0.355074 + 0.257977i
\(595\) 0.309271 + 6.41567i 0.0126789 + 0.263017i
\(596\) −6.10167 4.43312i −0.249934 0.181588i
\(597\) −13.4477 + 18.5091i −0.550376 + 0.757528i
\(598\) 30.4440 + 9.89184i 1.24495 + 0.404508i
\(599\) 33.3707 1.36349 0.681746 0.731589i \(-0.261221\pi\)
0.681746 + 0.731589i \(0.261221\pi\)
\(600\) 3.18712 + 7.32300i 0.130114 + 0.298960i
\(601\) −46.8052 −1.90922 −0.954611 0.297854i \(-0.903729\pi\)
−0.954611 + 0.297854i \(0.903729\pi\)
\(602\) −9.14003 2.96978i −0.372520 0.121039i
\(603\) −2.35544 + 3.24199i −0.0959211 + 0.132024i
\(604\) 33.6024 + 24.4136i 1.36726 + 0.993374i
\(605\) −14.6362 + 5.54805i −0.595047 + 0.225560i
\(606\) 9.44722 6.86381i 0.383767 0.278823i
\(607\) 30.7401i 1.24770i −0.781543 0.623851i \(-0.785567\pi\)
0.781543 0.623851i \(-0.214433\pi\)
\(608\) −12.2867 16.9111i −0.498289 0.685837i
\(609\) −3.63013 11.1724i −0.147100 0.452728i
\(610\) 4.57765 + 12.0762i 0.185344 + 0.488953i
\(611\) −10.3496 + 31.8527i −0.418699 + 1.28862i
\(612\) −11.8524 + 3.85107i −0.479104 + 0.155670i
\(613\) 36.4154 11.8321i 1.47081 0.477894i 0.539454 0.842015i \(-0.318631\pi\)
0.931352 + 0.364121i \(0.118631\pi\)
\(614\) 6.10966 18.8036i 0.246566 0.758852i
\(615\) −33.0941 + 26.5702i −1.33448 + 1.07141i
\(616\) −0.445615 1.37146i −0.0179543 0.0552577i
\(617\) 0.249989 + 0.344080i 0.0100642 + 0.0138521i 0.814019 0.580838i \(-0.197275\pi\)
−0.803955 + 0.594690i \(0.797275\pi\)
\(618\) 46.6032i 1.87466i
\(619\) 6.07691 4.41513i 0.244252 0.177459i −0.458924 0.888476i \(-0.651765\pi\)
0.703175 + 0.711016i \(0.251765\pi\)
\(620\) 0.393017 0.599675i 0.0157839 0.0240835i
\(621\) 9.44047 + 6.85890i 0.378833 + 0.275238i
\(622\) −35.9523 + 49.4840i −1.44155 + 1.98413i
\(623\) −13.6931 4.44914i −0.548601 0.178251i
\(624\) 23.6020 0.944834
\(625\) −17.0374 + 18.2955i −0.681496 + 0.731822i
\(626\) −39.3912 −1.57439
\(627\) 10.8077 + 3.51165i 0.431619 + 0.140242i
\(628\) −2.28467 + 3.14458i −0.0911682 + 0.125482i
\(629\) −5.03258 3.65638i −0.200662 0.145789i
\(630\) 4.65034 7.09560i 0.185274 0.282696i
\(631\) 9.11889 6.62526i 0.363017 0.263747i −0.391292 0.920266i \(-0.627972\pi\)
0.754309 + 0.656519i \(0.227972\pi\)
\(632\) 11.5163i 0.458094i
\(633\) 11.1878 + 15.3987i 0.444676 + 0.612044i
\(634\) 14.6852 + 45.1963i 0.583223 + 1.79498i
\(635\) 2.59943 2.08700i 0.103155 0.0828201i
\(636\) −12.0699 + 37.1473i −0.478602 + 1.47298i
\(637\) −19.3021 + 6.27165i −0.764779 + 0.248492i
\(638\) 21.3565 6.93916i 0.845513 0.274724i
\(639\) −5.46290 + 16.8131i −0.216109 + 0.665115i
\(640\) −4.53683 11.9686i −0.179334 0.473099i
\(641\) 8.05994 + 24.8060i 0.318349 + 0.979776i 0.974354 + 0.225020i \(0.0722448\pi\)
−0.656006 + 0.754756i \(0.727755\pi\)
\(642\) 12.9809 + 17.8666i 0.512314 + 0.705140i
\(643\) 31.9492i 1.25995i −0.776614 0.629977i \(-0.783064\pi\)
0.776614 0.629977i \(-0.216936\pi\)
\(644\) −8.57817 + 6.23241i −0.338027 + 0.245591i
\(645\) 21.3474 8.09201i 0.840555 0.318623i
\(646\) −12.6204 9.16923i −0.496542 0.360759i
\(647\) 4.34628 5.98214i 0.170870 0.235182i −0.714990 0.699134i \(-0.753569\pi\)
0.885860 + 0.463952i \(0.153569\pi\)
\(648\) −7.69677 2.50083i −0.302358 0.0982419i
\(649\) −9.83550 −0.386077
\(650\) −14.0388 32.2568i −0.550648 1.26522i
\(651\) −0.297895 −0.0116754
\(652\) 1.99435 + 0.648002i 0.0781046 + 0.0253777i
\(653\) 10.9829 15.1167i 0.429796 0.591563i −0.538111 0.842874i \(-0.680862\pi\)
0.967906 + 0.251311i \(0.0808618\pi\)
\(654\) 60.3601 + 43.8542i 2.36027 + 1.71483i
\(655\) −1.51967 31.5248i −0.0593784 1.23177i
\(656\) 22.2228 16.1458i 0.867654 0.630388i
\(657\) 1.42256i 0.0554994i
\(658\) −12.0742 16.6187i −0.470700 0.647863i
\(659\) −3.02885 9.32184i −0.117987 0.363128i 0.874571 0.484897i \(-0.161143\pi\)
−0.992558 + 0.121770i \(0.961143\pi\)
\(660\) 19.3116 + 12.6565i 0.751703 + 0.492654i
\(661\) −8.70145 + 26.7803i −0.338447 + 1.04163i 0.626552 + 0.779380i \(0.284466\pi\)
−0.964999 + 0.262253i \(0.915534\pi\)
\(662\) 5.87628 1.90932i 0.228388 0.0742078i
\(663\) 20.4202 6.63492i 0.793054 0.257679i
\(664\) −0.397637 + 1.22380i −0.0154313 + 0.0474927i
\(665\) 5.72850 0.276145i 0.222142 0.0107085i
\(666\) 2.53895 + 7.81409i 0.0983824 + 0.302790i
\(667\) −14.3987 19.8181i −0.557521 0.767361i
\(668\) 12.2014i 0.472085i
\(669\) −50.4120 + 36.6265i −1.94904 + 1.41606i
\(670\) −9.83349 2.67910i −0.379901 0.103503i
\(671\) 4.48150 + 3.25600i 0.173006 + 0.125696i
\(672\) −10.3722 + 14.2761i −0.400116 + 0.550713i
\(673\) −37.1153 12.0595i −1.43069 0.464859i −0.511707 0.859160i \(-0.670987\pi\)
−0.918981 + 0.394301i \(0.870987\pi\)
\(674\) −39.2290 −1.51104
\(675\) −1.23353 12.7647i −0.0474785 0.491314i
\(676\) −3.79434 −0.145936
\(677\) −4.78888 1.55600i −0.184052 0.0598020i 0.215541 0.976495i \(-0.430848\pi\)
−0.399593 + 0.916693i \(0.630848\pi\)
\(678\) −18.2081 + 25.0614i −0.699280 + 0.962476i
\(679\) −13.6721 9.93337i −0.524687 0.381208i
\(680\) −2.94398 3.66684i −0.112897 0.140617i
\(681\) 39.5590 28.7413i 1.51591 1.10137i
\(682\) 0.569440i 0.0218050i
\(683\) 17.8282 + 24.5384i 0.682178 + 0.938937i 0.999957 0.00922734i \(-0.00293719\pi\)
−0.317780 + 0.948165i \(0.602937\pi\)
\(684\) 3.43858 + 10.5829i 0.131478 + 0.404646i
\(685\) −0.405247 + 1.48743i −0.0154837 + 0.0568320i
\(686\) 8.32306 25.6157i 0.317776 0.978013i
\(687\) 5.17619 1.68185i 0.197484 0.0641664i
\(688\) −14.0529 + 4.56607i −0.535762 + 0.174080i
\(689\) 7.88781 24.2762i 0.300502 0.924849i
\(690\) 12.2599 44.9991i 0.466725 1.71309i
\(691\) −6.56134 20.1937i −0.249605 0.768205i −0.994845 0.101409i \(-0.967665\pi\)
0.745240 0.666796i \(-0.232335\pi\)
\(692\) 7.95730 + 10.9523i 0.302491 + 0.416344i
\(693\) 3.63886i 0.138229i
\(694\) 38.3600 27.8702i 1.45613 1.05794i
\(695\) 23.1991 + 28.8953i 0.879991 + 1.09606i
\(696\) 6.95781 + 5.05514i 0.263735 + 0.191615i
\(697\) 14.6881 20.2164i 0.556350 0.765751i
\(698\) 3.84445 + 1.24914i 0.145515 + 0.0472806i
\(699\) 13.0943 0.495273
\(700\) 11.3775 + 2.51822i 0.430028 + 0.0951799i
\(701\) 32.7698 1.23770 0.618849 0.785510i \(-0.287599\pi\)
0.618849 + 0.785510i \(0.287599\pi\)
\(702\) 17.1627 + 5.57648i 0.647763 + 0.210471i
\(703\) −3.26475 + 4.49354i −0.123132 + 0.169477i
\(704\) −16.9930 12.3461i −0.640447 0.465312i
\(705\) 47.0814 + 12.8272i 1.77319 + 0.483099i
\(706\) 8.85599 6.43425i 0.333299 0.242156i
\(707\) 2.52780i 0.0950676i
\(708\) −14.9240 20.5411i −0.560878 0.771982i
\(709\) −6.13273 18.8746i −0.230320 0.708851i −0.997708 0.0676683i \(-0.978444\pi\)
0.767388 0.641183i \(-0.221556\pi\)
\(710\) −44.9095 + 2.16489i −1.68542 + 0.0812467i
\(711\) 8.98015 27.6381i 0.336782 1.03651i
\(712\) 10.0248 3.25725i 0.375695 0.122071i
\(713\) −0.590793 + 0.191960i −0.0221254 + 0.00718897i
\(714\) −4.06943 + 12.5244i −0.152295 + 0.468715i
\(715\) −12.6204 8.27117i −0.471975 0.309324i
\(716\) 6.29100 + 19.3617i 0.235106 + 0.723580i
\(717\) −9.08759 12.5080i −0.339382 0.467120i
\(718\) 47.1144i 1.75829i
\(719\) 19.5945 14.2362i 0.730751 0.530922i −0.159050 0.987271i \(-0.550843\pi\)
0.889801 + 0.456349i \(0.150843\pi\)
\(720\) −0.628054 13.0287i −0.0234062 0.485550i
\(721\) −8.16149 5.92967i −0.303950 0.220832i
\(722\) 15.1012 20.7850i 0.562008 0.773537i
\(723\) 2.46676 + 0.801498i 0.0917397 + 0.0298080i
\(724\) −33.5609 −1.24728
\(725\) −5.81785 + 26.2853i −0.216069 + 0.976213i
\(726\) −32.0914 −1.19102
\(727\) 5.57804 + 1.81242i 0.206878 + 0.0672188i 0.410623 0.911805i \(-0.365311\pi\)
−0.203745 + 0.979024i \(0.565311\pi\)
\(728\) −1.42994 + 1.96815i −0.0529972 + 0.0729444i
\(729\) −2.83585 2.06037i −0.105032 0.0763099i
\(730\) −3.38313 + 1.28242i −0.125215 + 0.0474644i
\(731\) −10.8748 + 7.90103i −0.402220 + 0.292230i
\(732\) 14.3000i 0.528542i
\(733\) 20.2795 + 27.9123i 0.749039 + 1.03096i 0.998047 + 0.0624625i \(0.0198954\pi\)
−0.249008 + 0.968501i \(0.580105\pi\)
\(734\) −4.70321 14.4750i −0.173599 0.534282i
\(735\) 10.4812 + 27.6504i 0.386607 + 1.01990i
\(736\) −11.3710 + 34.9964i −0.419142 + 1.28999i
\(737\) −4.15759 + 1.35088i −0.153147 + 0.0497604i
\(738\) −31.3900 + 10.1992i −1.15548 + 0.375439i
\(739\) −12.2282 + 37.6345i −0.449821 + 1.38441i 0.427288 + 0.904116i \(0.359469\pi\)
−0.877109 + 0.480291i \(0.840531\pi\)
\(740\) −8.80010 + 7.06531i −0.323498 + 0.259726i
\(741\) −5.92426 18.2330i −0.217633 0.669805i
\(742\) 9.20219 + 12.6657i 0.337823 + 0.464974i
\(743\) 29.7058i 1.08980i 0.838501 + 0.544900i \(0.183433\pi\)
−0.838501 + 0.544900i \(0.816567\pi\)
\(744\) 0.176440 0.128191i 0.00646859 0.00469971i
\(745\) 3.93641 6.00627i 0.144219 0.220053i
\(746\) −37.6332 27.3421i −1.37785 1.00107i
\(747\) −1.90858 + 2.62694i −0.0698314 + 0.0961147i
\(748\) −12.9296 4.20109i −0.472754 0.153607i
\(749\) 4.78058 0.174679
\(750\) −45.9585 + 22.6937i −1.67817 + 0.828655i
\(751\) 26.8870 0.981122 0.490561 0.871407i \(-0.336792\pi\)
0.490561 + 0.871407i \(0.336792\pi\)
\(752\) −30.0375 9.75977i −1.09535 0.355902i
\(753\) 5.95552 8.19707i 0.217031 0.298718i
\(754\) −30.6482 22.2672i −1.11614 0.810925i
\(755\) −21.6781 + 33.0771i −0.788949 + 1.20380i
\(756\) −4.83591 + 3.51349i −0.175880 + 0.127784i
\(757\) 44.6792i 1.62389i 0.583731 + 0.811947i \(0.301592\pi\)
−0.583731 + 0.811947i \(0.698408\pi\)
\(758\) 40.3826 + 55.5819i 1.46676 + 2.01883i
\(759\) −6.18178 19.0256i −0.224384 0.690584i
\(760\) −3.27409 + 2.62866i −0.118764 + 0.0953514i
\(761\) 6.27550 19.3140i 0.227487 0.700132i −0.770543 0.637388i \(-0.780015\pi\)
0.998030 0.0627441i \(-0.0199852\pi\)
\(762\) 6.50010 2.11201i 0.235474 0.0765100i
\(763\) 15.3601 4.99080i 0.556073 0.180679i
\(764\) 0.918996 2.82838i 0.0332481 0.102327i
\(765\) −4.20597 11.0957i −0.152067 0.401167i