# Properties

 Label 25.2.e Level $25$ Weight $2$ Character orbit 25.e Rep. character $\chi_{25}(4,\cdot)$ Character field $\Q(\zeta_{10})$ Dimension $8$ Newform subspaces $1$ Sturm bound $5$ Trace bound $0$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$25 = 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 25.e (of order $$10$$ and degree $$4$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$25$$ Character field: $$\Q(\zeta_{10})$$ Newform subspaces: $$1$$ Sturm bound: $$5$$ Trace bound: $$0$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(25, [\chi])$$.

Total New Old
Modular forms 16 16 0
Cusp forms 8 8 0
Eisenstein series 8 8 0

## Trace form

 $$8 q - 5 q^{2} - 5 q^{3} - q^{4} - 9 q^{6} + 10 q^{8} + q^{9} + O(q^{10})$$ $$8 q - 5 q^{2} - 5 q^{3} - q^{4} - 9 q^{6} + 10 q^{8} + q^{9} - 5 q^{10} - 4 q^{11} + 15 q^{12} - 5 q^{13} + 13 q^{14} + 15 q^{15} + 3 q^{16} - 10 q^{17} - 5 q^{19} - 15 q^{20} - 4 q^{21} + 5 q^{23} - 20 q^{24} - 10 q^{25} + 6 q^{26} - 5 q^{27} - 15 q^{28} - 5 q^{29} + 15 q^{30} - 9 q^{31} + 10 q^{33} + 13 q^{34} + 15 q^{35} + 23 q^{36} + 30 q^{37} + 15 q^{38} - 3 q^{39} + 10 q^{40} - 4 q^{41} - 15 q^{42} - 2 q^{44} - 15 q^{45} - 19 q^{46} - 30 q^{48} + 14 q^{49} - 15 q^{50} - 4 q^{51} - 10 q^{52} - 10 q^{53} - 5 q^{54} - 10 q^{55} + 10 q^{56} + 20 q^{58} - 10 q^{60} - 9 q^{61} - 30 q^{62} + 10 q^{63} + 4 q^{64} + 5 q^{65} + 12 q^{66} + 20 q^{67} + 17 q^{69} + 30 q^{70} + 6 q^{71} + 5 q^{72} + 15 q^{73} - 12 q^{74} - 10 q^{75} - 20 q^{76} + 10 q^{77} + 25 q^{78} + 15 q^{79} + 20 q^{80} + 28 q^{81} - 45 q^{83} + 18 q^{84} - 15 q^{85} - 9 q^{86} - 20 q^{87} - 20 q^{88} - 25 q^{89} - 25 q^{90} + 6 q^{91} + 30 q^{92} - 27 q^{94} + 15 q^{95} + 16 q^{96} - 60 q^{97} - 10 q^{98} - 8 q^{99} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(25, [\chi])$$ into newform subspaces

Label Dim $A$ Field CM Traces $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
25.2.e.a $8$ $0.200$ 8.0.58140625.2 None $$-5$$ $$-5$$ $$0$$ $$0$$ $$q+(-1+\beta _{1})q^{2}+(-1+\beta _{2}-\beta _{3}+\beta _{7})q^{3}+\cdots$$