Properties

Label 25.2.d.a.11.1
Level $25$
Weight $2$
Character 25.11
Analytic conductor $0.200$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [25,2,Mod(6,25)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(25, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("25.6");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 25.d (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.199626005053\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 11.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 25.11
Dual form 25.2.d.a.16.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.363271i) q^{2} +(0.309017 - 0.951057i) q^{3} +(-0.500000 + 1.53884i) q^{4} +(-1.80902 - 1.31433i) q^{5} +(0.190983 + 0.587785i) q^{6} -1.61803 q^{7} +(-0.690983 - 2.12663i) q^{8} +(1.61803 + 1.17557i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.363271i) q^{2} +(0.309017 - 0.951057i) q^{3} +(-0.500000 + 1.53884i) q^{4} +(-1.80902 - 1.31433i) q^{5} +(0.190983 + 0.587785i) q^{6} -1.61803 q^{7} +(-0.690983 - 2.12663i) q^{8} +(1.61803 + 1.17557i) q^{9} +1.38197 q^{10} +(0.618034 - 0.449028i) q^{11} +(1.30902 + 0.951057i) q^{12} +(3.92705 + 2.85317i) q^{13} +(0.809017 - 0.587785i) q^{14} +(-1.80902 + 1.31433i) q^{15} +(-1.50000 - 1.08981i) q^{16} +(-0.236068 - 0.726543i) q^{17} -1.23607 q^{18} +(-1.80902 - 5.56758i) q^{19} +(2.92705 - 2.12663i) q^{20} +(-0.500000 + 1.53884i) q^{21} +(-0.145898 + 0.449028i) q^{22} +(-6.66312 + 4.84104i) q^{23} -2.23607 q^{24} +(1.54508 + 4.75528i) q^{25} -3.00000 q^{26} +(4.04508 - 2.93893i) q^{27} +(0.809017 - 2.48990i) q^{28} +(-0.427051 + 1.31433i) q^{29} +(0.427051 - 1.31433i) q^{30} +(-0.927051 - 2.85317i) q^{31} +5.61803 q^{32} +(-0.236068 - 0.726543i) q^{33} +(0.381966 + 0.277515i) q^{34} +(2.92705 + 2.12663i) q^{35} +(-2.61803 + 1.90211i) q^{36} +(-3.42705 - 2.48990i) q^{37} +(2.92705 + 2.12663i) q^{38} +(3.92705 - 2.85317i) q^{39} +(-1.54508 + 4.75528i) q^{40} +(4.23607 + 3.07768i) q^{41} +(-0.309017 - 0.951057i) q^{42} +1.85410 q^{43} +(0.381966 + 1.17557i) q^{44} +(-1.38197 - 4.25325i) q^{45} +(1.57295 - 4.84104i) q^{46} +(-0.500000 + 1.53884i) q^{47} +(-1.50000 + 1.08981i) q^{48} -4.38197 q^{49} +(-2.50000 - 1.81636i) q^{50} -0.763932 q^{51} +(-6.35410 + 4.61653i) q^{52} +(1.69098 - 5.20431i) q^{53} +(-0.954915 + 2.93893i) q^{54} -1.70820 q^{55} +(1.11803 + 3.44095i) q^{56} -5.85410 q^{57} +(-0.263932 - 0.812299i) q^{58} +(3.35410 + 2.43690i) q^{59} +(-1.11803 - 3.44095i) q^{60} +(3.80902 - 2.76741i) q^{61} +(1.50000 + 1.08981i) q^{62} +(-2.61803 - 1.90211i) q^{63} +(0.190983 - 0.138757i) q^{64} +(-3.35410 - 10.3229i) q^{65} +(0.381966 + 0.277515i) q^{66} +(2.85410 + 8.78402i) q^{67} +1.23607 q^{68} +(2.54508 + 7.83297i) q^{69} -2.23607 q^{70} +(-1.35410 + 4.16750i) q^{71} +(1.38197 - 4.25325i) q^{72} +(7.28115 - 5.29007i) q^{73} +2.61803 q^{74} +5.00000 q^{75} +9.47214 q^{76} +(-1.00000 + 0.726543i) q^{77} +(-0.927051 + 2.85317i) q^{78} +(0.954915 - 2.93893i) q^{79} +(1.28115 + 3.94298i) q^{80} +(0.309017 + 0.951057i) q^{81} -3.23607 q^{82} +(-0.545085 - 1.67760i) q^{83} +(-2.11803 - 1.53884i) q^{84} +(-0.527864 + 1.62460i) q^{85} +(-0.927051 + 0.673542i) q^{86} +(1.11803 + 0.812299i) q^{87} +(-1.38197 - 1.00406i) q^{88} +(-7.23607 + 5.25731i) q^{89} +(2.23607 + 1.62460i) q^{90} +(-6.35410 - 4.61653i) q^{91} +(-4.11803 - 12.6740i) q^{92} -3.00000 q^{93} +(-0.309017 - 0.951057i) q^{94} +(-4.04508 + 12.4495i) q^{95} +(1.73607 - 5.34307i) q^{96} +(0.881966 - 2.71441i) q^{97} +(2.19098 - 1.59184i) q^{98} +1.52786 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - q^{3} - 2 q^{4} - 5 q^{5} + 3 q^{6} - 2 q^{7} - 5 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{2} - q^{3} - 2 q^{4} - 5 q^{5} + 3 q^{6} - 2 q^{7} - 5 q^{8} + 2 q^{9} + 10 q^{10} - 2 q^{11} + 3 q^{12} + 9 q^{13} + q^{14} - 5 q^{15} - 6 q^{16} + 8 q^{17} + 4 q^{18} - 5 q^{19} + 5 q^{20} - 2 q^{21} - 14 q^{22} - 11 q^{23} - 5 q^{25} - 12 q^{26} + 5 q^{27} + q^{28} + 5 q^{29} - 5 q^{30} + 3 q^{31} + 18 q^{32} + 8 q^{33} + 6 q^{34} + 5 q^{35} - 6 q^{36} - 7 q^{37} + 5 q^{38} + 9 q^{39} + 5 q^{40} + 8 q^{41} + q^{42} - 6 q^{43} + 6 q^{44} - 10 q^{45} + 13 q^{46} - 2 q^{47} - 6 q^{48} - 22 q^{49} - 10 q^{50} - 12 q^{51} - 12 q^{52} + 9 q^{53} - 15 q^{54} + 20 q^{55} - 10 q^{57} - 10 q^{58} + 13 q^{61} + 6 q^{62} - 6 q^{63} + 3 q^{64} + 6 q^{66} - 2 q^{67} - 4 q^{68} - q^{69} + 8 q^{71} + 10 q^{72} + 9 q^{73} + 6 q^{74} + 20 q^{75} + 20 q^{76} - 4 q^{77} + 3 q^{78} + 15 q^{79} - 15 q^{80} - q^{81} - 4 q^{82} + 9 q^{83} - 4 q^{84} - 20 q^{85} + 3 q^{86} - 10 q^{88} - 20 q^{89} - 12 q^{91} - 12 q^{92} - 12 q^{93} + q^{94} - 5 q^{95} - 2 q^{96} + 8 q^{97} + 11 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/25\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.363271i −0.353553 + 0.256872i −0.750358 0.661031i \(-0.770119\pi\)
0.396805 + 0.917903i \(0.370119\pi\)
\(3\) 0.309017 0.951057i 0.178411 0.549093i −0.821362 0.570408i \(-0.806785\pi\)
0.999773 + 0.0213149i \(0.00678525\pi\)
\(4\) −0.500000 + 1.53884i −0.250000 + 0.769421i
\(5\) −1.80902 1.31433i −0.809017 0.587785i
\(6\) 0.190983 + 0.587785i 0.0779685 + 0.239962i
\(7\) −1.61803 −0.611559 −0.305780 0.952102i \(-0.598917\pi\)
−0.305780 + 0.952102i \(0.598917\pi\)
\(8\) −0.690983 2.12663i −0.244299 0.751876i
\(9\) 1.61803 + 1.17557i 0.539345 + 0.391857i
\(10\) 1.38197 0.437016
\(11\) 0.618034 0.449028i 0.186344 0.135387i −0.490702 0.871327i \(-0.663260\pi\)
0.677046 + 0.735940i \(0.263260\pi\)
\(12\) 1.30902 + 0.951057i 0.377881 + 0.274546i
\(13\) 3.92705 + 2.85317i 1.08917 + 0.791327i 0.979259 0.202615i \(-0.0649439\pi\)
0.109909 + 0.993942i \(0.464944\pi\)
\(14\) 0.809017 0.587785i 0.216219 0.157092i
\(15\) −1.80902 + 1.31433i −0.467086 + 0.339358i
\(16\) −1.50000 1.08981i −0.375000 0.272453i
\(17\) −0.236068 0.726543i −0.0572549 0.176212i 0.918339 0.395794i \(-0.129531\pi\)
−0.975594 + 0.219582i \(0.929531\pi\)
\(18\) −1.23607 −0.291344
\(19\) −1.80902 5.56758i −0.415017 1.27729i −0.912236 0.409666i \(-0.865645\pi\)
0.497219 0.867625i \(-0.334355\pi\)
\(20\) 2.92705 2.12663i 0.654508 0.475528i
\(21\) −0.500000 + 1.53884i −0.109109 + 0.335803i
\(22\) −0.145898 + 0.449028i −0.0311056 + 0.0957331i
\(23\) −6.66312 + 4.84104i −1.38936 + 1.00943i −0.393421 + 0.919359i \(0.628708\pi\)
−0.995936 + 0.0900679i \(0.971292\pi\)
\(24\) −2.23607 −0.456435
\(25\) 1.54508 + 4.75528i 0.309017 + 0.951057i
\(26\) −3.00000 −0.588348
\(27\) 4.04508 2.93893i 0.778477 0.565597i
\(28\) 0.809017 2.48990i 0.152890 0.470547i
\(29\) −0.427051 + 1.31433i −0.0793014 + 0.244065i −0.982846 0.184430i \(-0.940956\pi\)
0.903544 + 0.428495i \(0.140956\pi\)
\(30\) 0.427051 1.31433i 0.0779685 0.239962i
\(31\) −0.927051 2.85317i −0.166503 0.512444i 0.832641 0.553814i \(-0.186828\pi\)
−0.999144 + 0.0413693i \(0.986828\pi\)
\(32\) 5.61803 0.993137
\(33\) −0.236068 0.726543i −0.0410942 0.126475i
\(34\) 0.381966 + 0.277515i 0.0655066 + 0.0475934i
\(35\) 2.92705 + 2.12663i 0.494762 + 0.359466i
\(36\) −2.61803 + 1.90211i −0.436339 + 0.317019i
\(37\) −3.42705 2.48990i −0.563404 0.409337i 0.269299 0.963057i \(-0.413208\pi\)
−0.832703 + 0.553720i \(0.813208\pi\)
\(38\) 2.92705 + 2.12663i 0.474830 + 0.344984i
\(39\) 3.92705 2.85317i 0.628831 0.456873i
\(40\) −1.54508 + 4.75528i −0.244299 + 0.751876i
\(41\) 4.23607 + 3.07768i 0.661563 + 0.480653i 0.867190 0.497977i \(-0.165924\pi\)
−0.205628 + 0.978630i \(0.565924\pi\)
\(42\) −0.309017 0.951057i −0.0476824 0.146751i
\(43\) 1.85410 0.282748 0.141374 0.989956i \(-0.454848\pi\)
0.141374 + 0.989956i \(0.454848\pi\)
\(44\) 0.381966 + 1.17557i 0.0575835 + 0.177224i
\(45\) −1.38197 4.25325i −0.206011 0.634038i
\(46\) 1.57295 4.84104i 0.231919 0.713772i
\(47\) −0.500000 + 1.53884i −0.0729325 + 0.224463i −0.980877 0.194626i \(-0.937651\pi\)
0.907945 + 0.419089i \(0.137651\pi\)
\(48\) −1.50000 + 1.08981i −0.216506 + 0.157301i
\(49\) −4.38197 −0.625995
\(50\) −2.50000 1.81636i −0.353553 0.256872i
\(51\) −0.763932 −0.106972
\(52\) −6.35410 + 4.61653i −0.881155 + 0.640197i
\(53\) 1.69098 5.20431i 0.232274 0.714867i −0.765197 0.643796i \(-0.777358\pi\)
0.997471 0.0710707i \(-0.0226416\pi\)
\(54\) −0.954915 + 2.93893i −0.129947 + 0.399937i
\(55\) −1.70820 −0.230334
\(56\) 1.11803 + 3.44095i 0.149404 + 0.459817i
\(57\) −5.85410 −0.775395
\(58\) −0.263932 0.812299i −0.0346560 0.106660i
\(59\) 3.35410 + 2.43690i 0.436667 + 0.317257i 0.784309 0.620370i \(-0.213018\pi\)
−0.347642 + 0.937627i \(0.613018\pi\)
\(60\) −1.11803 3.44095i −0.144338 0.444225i
\(61\) 3.80902 2.76741i 0.487695 0.354331i −0.316602 0.948558i \(-0.602542\pi\)
0.804297 + 0.594227i \(0.202542\pi\)
\(62\) 1.50000 + 1.08981i 0.190500 + 0.138406i
\(63\) −2.61803 1.90211i −0.329841 0.239644i
\(64\) 0.190983 0.138757i 0.0238729 0.0173447i
\(65\) −3.35410 10.3229i −0.416025 1.28039i
\(66\) 0.381966 + 0.277515i 0.0470168 + 0.0341597i
\(67\) 2.85410 + 8.78402i 0.348684 + 1.07314i 0.959582 + 0.281430i \(0.0908086\pi\)
−0.610898 + 0.791709i \(0.709191\pi\)
\(68\) 1.23607 0.149895
\(69\) 2.54508 + 7.83297i 0.306392 + 0.942978i
\(70\) −2.23607 −0.267261
\(71\) −1.35410 + 4.16750i −0.160702 + 0.494591i −0.998694 0.0510922i \(-0.983730\pi\)
0.837992 + 0.545683i \(0.183730\pi\)
\(72\) 1.38197 4.25325i 0.162866 0.501251i
\(73\) 7.28115 5.29007i 0.852194 0.619156i −0.0735557 0.997291i \(-0.523435\pi\)
0.925750 + 0.378136i \(0.123435\pi\)
\(74\) 2.61803 0.304340
\(75\) 5.00000 0.577350
\(76\) 9.47214 1.08653
\(77\) −1.00000 + 0.726543i −0.113961 + 0.0827972i
\(78\) −0.927051 + 2.85317i −0.104968 + 0.323058i
\(79\) 0.954915 2.93893i 0.107436 0.330655i −0.882858 0.469640i \(-0.844384\pi\)
0.990295 + 0.138985i \(0.0443839\pi\)
\(80\) 1.28115 + 3.94298i 0.143237 + 0.440839i
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) −3.23607 −0.357364
\(83\) −0.545085 1.67760i −0.0598308 0.184140i 0.916674 0.399636i \(-0.130863\pi\)
−0.976505 + 0.215495i \(0.930863\pi\)
\(84\) −2.11803 1.53884i −0.231096 0.167901i
\(85\) −0.527864 + 1.62460i −0.0572549 + 0.176212i
\(86\) −0.927051 + 0.673542i −0.0999665 + 0.0726299i
\(87\) 1.11803 + 0.812299i 0.119866 + 0.0870876i
\(88\) −1.38197 1.00406i −0.147318 0.107033i
\(89\) −7.23607 + 5.25731i −0.767022 + 0.557274i −0.901056 0.433703i \(-0.857207\pi\)
0.134034 + 0.990977i \(0.457207\pi\)
\(90\) 2.23607 + 1.62460i 0.235702 + 0.171248i
\(91\) −6.35410 4.61653i −0.666091 0.483943i
\(92\) −4.11803 12.6740i −0.429335 1.32136i
\(93\) −3.00000 −0.311086
\(94\) −0.309017 0.951057i −0.0318727 0.0980940i
\(95\) −4.04508 + 12.4495i −0.415017 + 1.27729i
\(96\) 1.73607 5.34307i 0.177187 0.545325i
\(97\) 0.881966 2.71441i 0.0895501 0.275607i −0.896245 0.443559i \(-0.853716\pi\)
0.985795 + 0.167953i \(0.0537155\pi\)
\(98\) 2.19098 1.59184i 0.221323 0.160800i
\(99\) 1.52786 0.153556
\(100\) −8.09017 −0.809017
\(101\) −7.47214 −0.743505 −0.371753 0.928332i \(-0.621243\pi\)
−0.371753 + 0.928332i \(0.621243\pi\)
\(102\) 0.381966 0.277515i 0.0378203 0.0274780i
\(103\) −3.57295 + 10.9964i −0.352053 + 1.08351i 0.605645 + 0.795735i \(0.292915\pi\)
−0.957699 + 0.287773i \(0.907085\pi\)
\(104\) 3.35410 10.3229i 0.328897 1.01224i
\(105\) 2.92705 2.12663i 0.285651 0.207538i
\(106\) 1.04508 + 3.21644i 0.101508 + 0.312408i
\(107\) 10.4164 1.00699 0.503496 0.863998i \(-0.332047\pi\)
0.503496 + 0.863998i \(0.332047\pi\)
\(108\) 2.50000 + 7.69421i 0.240563 + 0.740376i
\(109\) −8.09017 5.87785i −0.774898 0.562996i 0.128546 0.991704i \(-0.458969\pi\)
−0.903443 + 0.428707i \(0.858969\pi\)
\(110\) 0.854102 0.620541i 0.0814354 0.0591663i
\(111\) −3.42705 + 2.48990i −0.325281 + 0.236331i
\(112\) 2.42705 + 1.76336i 0.229335 + 0.166621i
\(113\) −8.20820 5.96361i −0.772163 0.561009i 0.130454 0.991454i \(-0.458357\pi\)
−0.902617 + 0.430445i \(0.858357\pi\)
\(114\) 2.92705 2.12663i 0.274143 0.199177i
\(115\) 18.4164 1.71734
\(116\) −1.80902 1.31433i −0.167963 0.122032i
\(117\) 3.00000 + 9.23305i 0.277350 + 0.853596i
\(118\) −2.56231 −0.235879
\(119\) 0.381966 + 1.17557i 0.0350148 + 0.107764i
\(120\) 4.04508 + 2.93893i 0.369264 + 0.268286i
\(121\) −3.21885 + 9.90659i −0.292622 + 0.900599i
\(122\) −0.899187 + 2.76741i −0.0814086 + 0.250550i
\(123\) 4.23607 3.07768i 0.381953 0.277505i
\(124\) 4.85410 0.435911
\(125\) 3.45492 10.6331i 0.309017 0.951057i
\(126\) 2.00000 0.178174
\(127\) 12.8541 9.33905i 1.14062 0.828707i 0.153412 0.988162i \(-0.450974\pi\)
0.987205 + 0.159455i \(0.0509738\pi\)
\(128\) −3.51722 + 10.8249i −0.310881 + 0.956794i
\(129\) 0.572949 1.76336i 0.0504453 0.155255i
\(130\) 5.42705 + 3.94298i 0.475984 + 0.345823i
\(131\) −5.50000 16.9273i −0.480537 1.47894i −0.838342 0.545145i \(-0.816475\pi\)
0.357805 0.933797i \(-0.383525\pi\)
\(132\) 1.23607 0.107586
\(133\) 2.92705 + 9.00854i 0.253808 + 0.781139i
\(134\) −4.61803 3.35520i −0.398937 0.289845i
\(135\) −11.1803 −0.962250
\(136\) −1.38197 + 1.00406i −0.118503 + 0.0860972i
\(137\) −4.80902 3.49396i −0.410862 0.298509i 0.363089 0.931755i \(-0.381722\pi\)
−0.773951 + 0.633246i \(0.781722\pi\)
\(138\) −4.11803 2.99193i −0.350550 0.254690i
\(139\) −4.04508 + 2.93893i −0.343100 + 0.249276i −0.745968 0.665981i \(-0.768013\pi\)
0.402869 + 0.915258i \(0.368013\pi\)
\(140\) −4.73607 + 3.44095i −0.400271 + 0.290814i
\(141\) 1.30902 + 0.951057i 0.110239 + 0.0800934i
\(142\) −0.836881 2.57565i −0.0702295 0.216144i
\(143\) 3.70820 0.310096
\(144\) −1.14590 3.52671i −0.0954915 0.293893i
\(145\) 2.50000 1.81636i 0.207614 0.150840i
\(146\) −1.71885 + 5.29007i −0.142253 + 0.437809i
\(147\) −1.35410 + 4.16750i −0.111684 + 0.343729i
\(148\) 5.54508 4.02874i 0.455803 0.331160i
\(149\) 13.9443 1.14236 0.571180 0.820825i \(-0.306486\pi\)
0.571180 + 0.820825i \(0.306486\pi\)
\(150\) −2.50000 + 1.81636i −0.204124 + 0.148305i
\(151\) −5.56231 −0.452654 −0.226327 0.974051i \(-0.572672\pi\)
−0.226327 + 0.974051i \(0.572672\pi\)
\(152\) −10.5902 + 7.69421i −0.858976 + 0.624083i
\(153\) 0.472136 1.45309i 0.0381699 0.117475i
\(154\) 0.236068 0.726543i 0.0190229 0.0585465i
\(155\) −2.07295 + 6.37988i −0.166503 + 0.512444i
\(156\) 2.42705 + 7.46969i 0.194320 + 0.598054i
\(157\) −9.18034 −0.732671 −0.366335 0.930483i \(-0.619388\pi\)
−0.366335 + 0.930483i \(0.619388\pi\)
\(158\) 0.590170 + 1.81636i 0.0469514 + 0.144502i
\(159\) −4.42705 3.21644i −0.351088 0.255080i
\(160\) −10.1631 7.38394i −0.803465 0.583752i
\(161\) 10.7812 7.83297i 0.849674 0.617324i
\(162\) −0.500000 0.363271i −0.0392837 0.0285413i
\(163\) −8.89919 6.46564i −0.697038 0.506428i 0.181928 0.983312i \(-0.441766\pi\)
−0.878966 + 0.476884i \(0.841766\pi\)
\(164\) −6.85410 + 4.97980i −0.535215 + 0.388857i
\(165\) −0.527864 + 1.62460i −0.0410942 + 0.126475i
\(166\) 0.881966 + 0.640786i 0.0684538 + 0.0497346i
\(167\) −1.71885 5.29007i −0.133008 0.409358i 0.862267 0.506455i \(-0.169044\pi\)
−0.995275 + 0.0970971i \(0.969044\pi\)
\(168\) 3.61803 0.279137
\(169\) 3.26393 + 10.0453i 0.251072 + 0.772719i
\(170\) −0.326238 1.00406i −0.0250213 0.0770077i
\(171\) 3.61803 11.1352i 0.276678 0.851527i
\(172\) −0.927051 + 2.85317i −0.0706870 + 0.217552i
\(173\) 13.6631 9.92684i 1.03879 0.754723i 0.0687392 0.997635i \(-0.478102\pi\)
0.970049 + 0.242911i \(0.0781024\pi\)
\(174\) −0.854102 −0.0647493
\(175\) −2.50000 7.69421i −0.188982 0.581628i
\(176\) −1.41641 −0.106766
\(177\) 3.35410 2.43690i 0.252110 0.183168i
\(178\) 1.70820 5.25731i 0.128035 0.394052i
\(179\) −2.92705 + 9.00854i −0.218778 + 0.673330i 0.780086 + 0.625673i \(0.215175\pi\)
−0.998864 + 0.0476570i \(0.984825\pi\)
\(180\) 7.23607 0.539345
\(181\) 4.23607 + 13.0373i 0.314864 + 0.969053i 0.975810 + 0.218619i \(0.0701553\pi\)
−0.660946 + 0.750434i \(0.729845\pi\)
\(182\) 4.85410 0.359810
\(183\) −1.45492 4.47777i −0.107550 0.331006i
\(184\) 14.8992 + 10.8249i 1.09838 + 0.798022i
\(185\) 2.92705 + 9.00854i 0.215201 + 0.662321i
\(186\) 1.50000 1.08981i 0.109985 0.0799090i
\(187\) −0.472136 0.343027i −0.0345260 0.0250846i
\(188\) −2.11803 1.53884i −0.154474 0.112232i
\(189\) −6.54508 + 4.75528i −0.476085 + 0.345896i
\(190\) −2.50000 7.69421i −0.181369 0.558197i
\(191\) 19.5623 + 14.2128i 1.41548 + 1.02841i 0.992497 + 0.122267i \(0.0390165\pi\)
0.422982 + 0.906138i \(0.360984\pi\)
\(192\) −0.0729490 0.224514i −0.00526464 0.0162029i
\(193\) −5.70820 −0.410886 −0.205443 0.978669i \(-0.565863\pi\)
−0.205443 + 0.978669i \(0.565863\pi\)
\(194\) 0.545085 + 1.67760i 0.0391348 + 0.120445i
\(195\) −10.8541 −0.777278
\(196\) 2.19098 6.74315i 0.156499 0.481654i
\(197\) −3.00000 + 9.23305i −0.213741 + 0.657828i 0.785499 + 0.618862i \(0.212406\pi\)
−0.999241 + 0.0389652i \(0.987594\pi\)
\(198\) −0.763932 + 0.555029i −0.0542903 + 0.0394442i
\(199\) 2.56231 0.181637 0.0908185 0.995867i \(-0.471052\pi\)
0.0908185 + 0.995867i \(0.471052\pi\)
\(200\) 9.04508 6.57164i 0.639584 0.464685i
\(201\) 9.23607 0.651462
\(202\) 3.73607 2.71441i 0.262869 0.190985i
\(203\) 0.690983 2.12663i 0.0484975 0.149260i
\(204\) 0.381966 1.17557i 0.0267430 0.0823064i
\(205\) −3.61803 11.1352i −0.252694 0.777714i
\(206\) −2.20820 6.79615i −0.153853 0.473510i
\(207\) −16.4721 −1.14489
\(208\) −2.78115 8.55951i −0.192838 0.593495i
\(209\) −3.61803 2.62866i −0.250265 0.181828i
\(210\) −0.690983 + 2.12663i −0.0476824 + 0.146751i
\(211\) −10.6631 + 7.74721i −0.734079 + 0.533340i −0.890851 0.454295i \(-0.849891\pi\)
0.156772 + 0.987635i \(0.449891\pi\)
\(212\) 7.16312 + 5.20431i 0.491965 + 0.357434i
\(213\) 3.54508 + 2.57565i 0.242905 + 0.176481i
\(214\) −5.20820 + 3.78398i −0.356025 + 0.258668i
\(215\) −3.35410 2.43690i −0.228748 0.166195i
\(216\) −9.04508 6.57164i −0.615440 0.447143i
\(217\) 1.50000 + 4.61653i 0.101827 + 0.313390i
\(218\) 6.18034 0.418585
\(219\) −2.78115 8.55951i −0.187933 0.578398i
\(220\) 0.854102 2.62866i 0.0575835 0.177224i
\(221\) 1.14590 3.52671i 0.0770814 0.237232i
\(222\) 0.809017 2.48990i 0.0542977 0.167111i
\(223\) −17.9443 + 13.0373i −1.20164 + 0.873041i −0.994445 0.105260i \(-0.966433\pi\)
−0.207193 + 0.978300i \(0.566433\pi\)
\(224\) −9.09017 −0.607363
\(225\) −3.09017 + 9.51057i −0.206011 + 0.634038i
\(226\) 6.27051 0.417108
\(227\) −15.5623 + 11.3067i −1.03291 + 0.750451i −0.968888 0.247498i \(-0.920392\pi\)
−0.0640182 + 0.997949i \(0.520392\pi\)
\(228\) 2.92705 9.00854i 0.193849 0.596605i
\(229\) 2.56231 7.88597i 0.169322 0.521119i −0.830007 0.557753i \(-0.811664\pi\)
0.999329 + 0.0366339i \(0.0116635\pi\)
\(230\) −9.20820 + 6.69015i −0.607171 + 0.441136i
\(231\) 0.381966 + 1.17557i 0.0251315 + 0.0773469i
\(232\) 3.09017 0.202880
\(233\) 4.61803 + 14.2128i 0.302537 + 0.931115i 0.980585 + 0.196096i \(0.0628265\pi\)
−0.678047 + 0.735018i \(0.737174\pi\)
\(234\) −4.85410 3.52671i −0.317323 0.230548i
\(235\) 2.92705 2.12663i 0.190940 0.138726i
\(236\) −5.42705 + 3.94298i −0.353271 + 0.256666i
\(237\) −2.50000 1.81636i −0.162392 0.117985i
\(238\) −0.618034 0.449028i −0.0400612 0.0291062i
\(239\) 23.8435 17.3233i 1.54231 1.12055i 0.593436 0.804881i \(-0.297771\pi\)
0.948869 0.315669i \(-0.102229\pi\)
\(240\) 4.14590 0.267617
\(241\) −9.28115 6.74315i −0.597852 0.434365i 0.247264 0.968948i \(-0.420468\pi\)
−0.845116 + 0.534584i \(0.820468\pi\)
\(242\) −1.98936 6.12261i −0.127881 0.393576i
\(243\) 16.0000 1.02640
\(244\) 2.35410 + 7.24518i 0.150706 + 0.463825i
\(245\) 7.92705 + 5.75934i 0.506441 + 0.367951i
\(246\) −1.00000 + 3.07768i −0.0637577 + 0.196226i
\(247\) 8.78115 27.0256i 0.558731 1.71960i
\(248\) −5.42705 + 3.94298i −0.344618 + 0.250380i
\(249\) −1.76393 −0.111785
\(250\) 2.13525 + 6.57164i 0.135045 + 0.415627i
\(251\) −6.81966 −0.430453 −0.215227 0.976564i \(-0.569049\pi\)
−0.215227 + 0.976564i \(0.569049\pi\)
\(252\) 4.23607 3.07768i 0.266847 0.193876i
\(253\) −1.94427 + 5.98385i −0.122235 + 0.376202i
\(254\) −3.03444 + 9.33905i −0.190398 + 0.585984i
\(255\) 1.38197 + 1.00406i 0.0865421 + 0.0628765i
\(256\) −2.02786 6.24112i −0.126742 0.390070i
\(257\) 16.1459 1.00715 0.503577 0.863951i \(-0.332017\pi\)
0.503577 + 0.863951i \(0.332017\pi\)
\(258\) 0.354102 + 1.08981i 0.0220454 + 0.0678488i
\(259\) 5.54508 + 4.02874i 0.344555 + 0.250334i
\(260\) 17.5623 1.08917
\(261\) −2.23607 + 1.62460i −0.138409 + 0.100560i
\(262\) 8.89919 + 6.46564i 0.549794 + 0.399448i
\(263\) 17.8713 + 12.9843i 1.10199 + 0.800645i 0.981384 0.192055i \(-0.0615153\pi\)
0.120609 + 0.992700i \(0.461515\pi\)
\(264\) −1.38197 + 1.00406i −0.0850541 + 0.0617954i
\(265\) −9.89919 + 7.19218i −0.608102 + 0.441812i
\(266\) −4.73607 3.44095i −0.290387 0.210978i
\(267\) 2.76393 + 8.50651i 0.169150 + 0.520590i
\(268\) −14.9443 −0.912867
\(269\) −5.32624 16.3925i −0.324746 0.999467i −0.971555 0.236814i \(-0.923897\pi\)
0.646808 0.762652i \(-0.276103\pi\)
\(270\) 5.59017 4.06150i 0.340207 0.247175i
\(271\) −2.47214 + 7.60845i −0.150172 + 0.462181i −0.997640 0.0686657i \(-0.978126\pi\)
0.847468 + 0.530846i \(0.178126\pi\)
\(272\) −0.437694 + 1.34708i −0.0265391 + 0.0816790i
\(273\) −6.35410 + 4.61653i −0.384568 + 0.279405i
\(274\) 3.67376 0.221940
\(275\) 3.09017 + 2.24514i 0.186344 + 0.135387i
\(276\) −13.3262 −0.802145
\(277\) 9.13525 6.63715i 0.548884 0.398788i −0.278490 0.960439i \(-0.589834\pi\)
0.827374 + 0.561651i \(0.189834\pi\)
\(278\) 0.954915 2.93893i 0.0572720 0.176265i
\(279\) 1.85410 5.70634i 0.111002 0.341630i
\(280\) 2.50000 7.69421i 0.149404 0.459817i
\(281\) −0.336881 1.03681i −0.0200966 0.0618511i 0.940505 0.339779i \(-0.110352\pi\)
−0.960602 + 0.277928i \(0.910352\pi\)
\(282\) −1.00000 −0.0595491
\(283\) −7.15248 22.0131i −0.425171 1.30854i −0.902831 0.429996i \(-0.858515\pi\)
0.477660 0.878545i \(-0.341485\pi\)
\(284\) −5.73607 4.16750i −0.340373 0.247295i
\(285\) 10.5902 + 7.69421i 0.627308 + 0.455766i
\(286\) −1.85410 + 1.34708i −0.109635 + 0.0796547i
\(287\) −6.85410 4.97980i −0.404585 0.293948i
\(288\) 9.09017 + 6.60440i 0.535643 + 0.389168i
\(289\) 13.2812 9.64932i 0.781244 0.567607i
\(290\) −0.590170 + 1.81636i −0.0346560 + 0.106660i
\(291\) −2.30902 1.67760i −0.135357 0.0983426i
\(292\) 4.50000 + 13.8496i 0.263343 + 0.810485i
\(293\) −28.4721 −1.66336 −0.831680 0.555255i \(-0.812621\pi\)
−0.831680 + 0.555255i \(0.812621\pi\)
\(294\) −0.836881 2.57565i −0.0488079 0.150215i
\(295\) −2.86475 8.81678i −0.166792 0.513333i
\(296\) −2.92705 + 9.00854i −0.170131 + 0.523611i
\(297\) 1.18034 3.63271i 0.0684903 0.210791i
\(298\) −6.97214 + 5.06555i −0.403885 + 0.293440i
\(299\) −39.9787 −2.31203
\(300\) −2.50000 + 7.69421i −0.144338 + 0.444225i
\(301\) −3.00000 −0.172917
\(302\) 2.78115 2.02063i 0.160037 0.116274i
\(303\) −2.30902 + 7.10642i −0.132650 + 0.408253i
\(304\) −3.35410 + 10.3229i −0.192371 + 0.592057i
\(305\) −10.5279 −0.602824
\(306\) 0.291796 + 0.898056i 0.0166809 + 0.0513384i
\(307\) 4.76393 0.271892 0.135946 0.990716i \(-0.456593\pi\)
0.135946 + 0.990716i \(0.456593\pi\)
\(308\) −0.618034 1.90211i −0.0352158 0.108383i
\(309\) 9.35410 + 6.79615i 0.532136 + 0.386620i
\(310\) −1.28115 3.94298i −0.0727646 0.223946i
\(311\) 23.8713 17.3435i 1.35362 0.983461i 0.354796 0.934944i \(-0.384550\pi\)
0.998822 0.0485178i \(-0.0154498\pi\)
\(312\) −8.78115 6.37988i −0.497135 0.361190i
\(313\) 17.1803 + 12.4822i 0.971090 + 0.705538i 0.955700 0.294343i \(-0.0951009\pi\)
0.0153904 + 0.999882i \(0.495101\pi\)
\(314\) 4.59017 3.33495i 0.259038 0.188202i
\(315\) 2.23607 + 6.88191i 0.125988 + 0.387752i
\(316\) 4.04508 + 2.93893i 0.227554 + 0.165328i
\(317\) −7.30902 22.4948i −0.410515 1.26344i −0.916201 0.400719i \(-0.868761\pi\)
0.505686 0.862718i \(-0.331239\pi\)
\(318\) 3.38197 0.189651
\(319\) 0.326238 + 1.00406i 0.0182658 + 0.0562164i
\(320\) −0.527864 −0.0295085
\(321\) 3.21885 9.90659i 0.179659 0.552932i
\(322\) −2.54508 + 7.83297i −0.141832 + 0.436514i
\(323\) −3.61803 + 2.62866i −0.201313 + 0.146262i
\(324\) −1.61803 −0.0898908
\(325\) −7.50000 + 23.0826i −0.416025 + 1.28039i
\(326\) 6.79837 0.376527
\(327\) −8.09017 + 5.87785i −0.447387 + 0.325046i
\(328\) 3.61803 11.1352i 0.199773 0.614837i
\(329\) 0.809017 2.48990i 0.0446026 0.137273i
\(330\) −0.326238 1.00406i −0.0179588 0.0552715i
\(331\) 5.29180 + 16.2865i 0.290863 + 0.895186i 0.984580 + 0.174937i \(0.0559722\pi\)
−0.693716 + 0.720248i \(0.744028\pi\)
\(332\) 2.85410 0.156639
\(333\) −2.61803 8.05748i −0.143467 0.441547i
\(334\) 2.78115 + 2.02063i 0.152178 + 0.110564i
\(335\) 6.38197 19.6417i 0.348684 1.07314i
\(336\) 2.42705 1.76336i 0.132406 0.0961989i
\(337\) −0.927051 0.673542i −0.0504997 0.0366902i 0.562249 0.826968i \(-0.309936\pi\)
−0.612749 + 0.790278i \(0.709936\pi\)
\(338\) −5.28115 3.83698i −0.287257 0.208704i
\(339\) −8.20820 + 5.96361i −0.445808 + 0.323899i
\(340\) −2.23607 1.62460i −0.121268 0.0881062i
\(341\) −1.85410 1.34708i −0.100405 0.0729487i
\(342\) 2.23607 + 6.88191i 0.120913 + 0.372131i
\(343\) 18.4164 0.994393
\(344\) −1.28115 3.94298i −0.0690751 0.212591i
\(345\) 5.69098 17.5150i 0.306392 0.942978i
\(346\) −3.22542 + 9.92684i −0.173400 + 0.533670i
\(347\) −9.60739 + 29.5685i −0.515752 + 1.58732i 0.266158 + 0.963929i \(0.414246\pi\)
−0.781910 + 0.623391i \(0.785754\pi\)
\(348\) −1.80902 + 1.31433i −0.0969735 + 0.0704554i
\(349\) 8.29180 0.443850 0.221925 0.975064i \(-0.428766\pi\)
0.221925 + 0.975064i \(0.428766\pi\)
\(350\) 4.04508 + 2.93893i 0.216219 + 0.157092i
\(351\) 24.2705 1.29546
\(352\) 3.47214 2.52265i 0.185065 0.134458i
\(353\) 7.44427 22.9111i 0.396219 1.21944i −0.531790 0.846876i \(-0.678480\pi\)
0.928008 0.372559i \(-0.121520\pi\)
\(354\) −0.791796 + 2.43690i −0.0420835 + 0.129520i
\(355\) 7.92705 5.75934i 0.420724 0.305674i
\(356\) −4.47214 13.7638i −0.237023 0.729481i
\(357\) 1.23607 0.0654197
\(358\) −1.80902 5.56758i −0.0956095 0.294256i
\(359\) 23.2533 + 16.8945i 1.22726 + 0.891658i 0.996682 0.0813956i \(-0.0259377\pi\)
0.230580 + 0.973053i \(0.425938\pi\)
\(360\) −8.09017 + 5.87785i −0.426389 + 0.309790i
\(361\) −12.3541 + 8.97578i −0.650216 + 0.472409i
\(362\) −6.85410 4.97980i −0.360244 0.261732i
\(363\) 8.42705 + 6.12261i 0.442305 + 0.321354i
\(364\) 10.2812 7.46969i 0.538879 0.391518i
\(365\) −20.1246 −1.05337
\(366\) 2.35410 + 1.71036i 0.123051 + 0.0894017i
\(367\) −1.68034 5.17155i −0.0877130 0.269953i 0.897573 0.440866i \(-0.145328\pi\)
−0.985286 + 0.170913i \(0.945328\pi\)
\(368\) 15.2705 0.796030
\(369\) 3.23607 + 9.95959i 0.168463 + 0.518476i
\(370\) −4.73607 3.44095i −0.246216 0.178887i
\(371\) −2.73607 + 8.42075i −0.142050 + 0.437184i
\(372\) 1.50000 4.61653i 0.0777714 0.239356i
\(373\) −4.26393 + 3.09793i −0.220778 + 0.160405i −0.692677 0.721248i \(-0.743569\pi\)
0.471899 + 0.881653i \(0.343569\pi\)
\(374\) 0.360680 0.0186503
\(375\) −9.04508 6.57164i −0.467086 0.339358i
\(376\) 3.61803 0.186586
\(377\) −5.42705 + 3.94298i −0.279507 + 0.203074i
\(378\) 1.54508 4.75528i 0.0794706 0.244585i
\(379\) −10.6910 + 32.9035i −0.549159 + 1.69014i 0.161732 + 0.986835i \(0.448292\pi\)
−0.710891 + 0.703303i \(0.751708\pi\)
\(380\) −17.1353 12.4495i −0.879020 0.638645i
\(381\) −4.90983 15.1109i −0.251538 0.774155i
\(382\) −14.9443 −0.764615
\(383\) −3.51064 10.8046i −0.179385 0.552092i 0.820421 0.571760i \(-0.193739\pi\)
−0.999807 + 0.0196680i \(0.993739\pi\)
\(384\) 9.20820 + 6.69015i 0.469904 + 0.341405i
\(385\) 2.76393 0.140863
\(386\) 2.85410 2.07363i 0.145270 0.105545i
\(387\) 3.00000 + 2.17963i 0.152499 + 0.110797i
\(388\) 3.73607 + 2.71441i 0.189670 + 0.137803i
\(389\) −12.1353 + 8.81678i −0.615282 + 0.447028i −0.851270 0.524727i \(-0.824167\pi\)
0.235988 + 0.971756i \(0.424167\pi\)
\(390\) 5.42705 3.94298i 0.274809 0.199661i
\(391\) 5.09017 + 3.69822i 0.257421 + 0.187027i
\(392\) 3.02786 + 9.31881i 0.152930 + 0.470671i
\(393\) −17.7984 −0.897809
\(394\) −1.85410 5.70634i −0.0934083 0.287481i
\(395\) −5.59017 + 4.06150i −0.281272 + 0.204356i
\(396\) −0.763932 + 2.35114i −0.0383890 + 0.118149i
\(397\) −0.0106431 + 0.0327561i −0.000534163 + 0.00164398i −0.951323 0.308195i \(-0.900275\pi\)
0.950789 + 0.309839i \(0.100275\pi\)
\(398\) −1.28115 + 0.930812i −0.0642184 + 0.0466574i
\(399\) 9.47214 0.474200
\(400\) 2.86475 8.81678i 0.143237 0.440839i
\(401\) −22.5967 −1.12843 −0.564214 0.825629i \(-0.690821\pi\)
−0.564214 + 0.825629i \(0.690821\pi\)
\(402\) −4.61803 + 3.35520i −0.230327 + 0.167342i
\(403\) 4.50000 13.8496i 0.224161 0.689897i
\(404\) 3.73607 11.4984i 0.185876 0.572069i
\(405\) 0.690983 2.12663i 0.0343352 0.105673i
\(406\) 0.427051 + 1.31433i 0.0211942 + 0.0652290i
\(407\) −3.23607 −0.160406
\(408\) 0.527864 + 1.62460i 0.0261332 + 0.0804296i
\(409\) −22.9894 16.7027i −1.13675 0.825898i −0.150087 0.988673i \(-0.547955\pi\)
−0.986663 + 0.162775i \(0.947955\pi\)
\(410\) 5.85410 + 4.25325i 0.289113 + 0.210053i
\(411\) −4.80902 + 3.49396i −0.237211 + 0.172344i
\(412\) −15.1353 10.9964i −0.745660 0.541754i
\(413\) −5.42705 3.94298i −0.267048 0.194022i
\(414\) 8.23607 5.98385i 0.404781 0.294090i
\(415\) −1.21885 + 3.75123i −0.0598308 + 0.184140i
\(416\) 22.0623 + 16.0292i 1.08169 + 0.785896i
\(417\) 1.54508 + 4.75528i 0.0756631 + 0.232867i
\(418\) 2.76393 0.135188
\(419\) −0.163119 0.502029i −0.00796888 0.0245257i 0.946993 0.321254i \(-0.104104\pi\)
−0.954962 + 0.296728i \(0.904104\pi\)
\(420\) 1.80902 + 5.56758i 0.0882710 + 0.271670i
\(421\) 9.88854 30.4338i 0.481938 1.48325i −0.354429 0.935083i \(-0.615325\pi\)
0.836367 0.548170i \(-0.184675\pi\)
\(422\) 2.51722 7.74721i 0.122536 0.377128i
\(423\) −2.61803 + 1.90211i −0.127293 + 0.0924839i
\(424\) −12.2361 −0.594236
\(425\) 3.09017 2.24514i 0.149895 0.108905i
\(426\) −2.70820 −0.131213
\(427\) −6.16312 + 4.47777i −0.298254 + 0.216694i
\(428\) −5.20820 + 16.0292i −0.251748 + 0.774801i
\(429\) 1.14590 3.52671i 0.0553245 0.170271i
\(430\) 2.56231 0.123565
\(431\) 7.36475 + 22.6664i 0.354747 + 1.09180i 0.956156 + 0.292858i \(0.0946064\pi\)
−0.601409 + 0.798942i \(0.705394\pi\)
\(432\) −9.27051 −0.446028
\(433\) 6.22542 + 19.1599i 0.299175 + 0.920765i 0.981787 + 0.189985i \(0.0608438\pi\)
−0.682612 + 0.730781i \(0.739156\pi\)
\(434\) −2.42705 1.76336i −0.116502 0.0846438i
\(435\) −0.954915 2.93893i −0.0457847 0.140911i
\(436\) 13.0902 9.51057i 0.626905 0.455473i
\(437\) 39.0066 + 28.3399i 1.86594 + 1.35568i
\(438\) 4.50000 + 3.26944i 0.215018 + 0.156220i
\(439\) −4.83688 + 3.51420i −0.230852 + 0.167724i −0.697198 0.716879i \(-0.745570\pi\)
0.466346 + 0.884602i \(0.345570\pi\)
\(440\) 1.18034 + 3.63271i 0.0562705 + 0.173183i
\(441\) −7.09017 5.15131i −0.337627 0.245300i
\(442\) 0.708204 + 2.17963i 0.0336858 + 0.103674i
\(443\) 12.0557 0.572785 0.286392 0.958112i \(-0.407544\pi\)
0.286392 + 0.958112i \(0.407544\pi\)
\(444\) −2.11803 6.51864i −0.100517 0.309361i
\(445\) 20.0000 0.948091
\(446\) 4.23607 13.0373i 0.200584 0.617333i
\(447\) 4.30902 13.2618i 0.203810 0.627261i
\(448\) −0.309017 + 0.224514i −0.0145997 + 0.0106073i
\(449\) 20.3262 0.959254 0.479627 0.877472i \(-0.340772\pi\)
0.479627 + 0.877472i \(0.340772\pi\)
\(450\) −1.90983 5.87785i −0.0900303 0.277085i
\(451\) 4.00000 0.188353
\(452\) 13.2812 9.64932i 0.624693 0.453866i
\(453\) −1.71885 + 5.29007i −0.0807585 + 0.248549i
\(454\) 3.67376 11.3067i 0.172418 0.530649i
\(455\) 5.42705 + 16.7027i 0.254424 + 0.783037i
\(456\) 4.04508 + 12.4495i 0.189428 + 0.583001i
\(457\) 5.41641 0.253369 0.126684 0.991943i \(-0.459566\pi\)
0.126684 + 0.991943i \(0.459566\pi\)
\(458\) 1.58359 + 4.87380i 0.0739964 + 0.227738i
\(459\) −3.09017 2.24514i −0.144237 0.104794i
\(460\) −9.20820 + 28.3399i −0.429335 + 1.32136i
\(461\) −18.7533 + 13.6251i −0.873428 + 0.634582i −0.931505 0.363730i \(-0.881503\pi\)
0.0580768 + 0.998312i \(0.481503\pi\)
\(462\) −0.618034 0.449028i −0.0287535 0.0208907i
\(463\) −13.0451 9.47781i −0.606257 0.440471i 0.241838 0.970317i \(-0.422250\pi\)
−0.848094 + 0.529846i \(0.822250\pi\)
\(464\) 2.07295 1.50609i 0.0962342 0.0699183i
\(465\) 5.42705 + 3.94298i 0.251673 + 0.182851i
\(466\) −7.47214 5.42882i −0.346140 0.251485i
\(467\) −8.79180 27.0584i −0.406836 1.25211i −0.919353 0.393435i \(-0.871287\pi\)
0.512517 0.858677i \(-0.328713\pi\)
\(468\) −15.7082 −0.726112
\(469\) −4.61803 14.2128i −0.213241 0.656288i
\(470\) −0.690983 + 2.12663i −0.0318727 + 0.0980940i
\(471\) −2.83688 + 8.73102i −0.130717 + 0.402304i
\(472\) 2.86475 8.81678i 0.131861 0.405825i
\(473\) 1.14590 0.832544i 0.0526884 0.0382804i
\(474\) 1.90983 0.0877214
\(475\) 23.6803 17.2048i 1.08653 0.789409i
\(476\) −2.00000 −0.0916698
\(477\) 8.85410 6.43288i 0.405401 0.294541i
\(478\) −5.62868 + 17.3233i −0.257450 + 0.792349i
\(479\) −1.28115 + 3.94298i −0.0585374 + 0.180160i −0.976050 0.217548i \(-0.930194\pi\)
0.917512 + 0.397708i \(0.130194\pi\)
\(480\) −10.1631 + 7.38394i −0.463881 + 0.337029i
\(481\) −6.35410 19.5559i −0.289722 0.891673i
\(482\) 7.09017 0.322948
\(483\) −4.11803 12.6740i −0.187377 0.576687i
\(484\) −13.6353 9.90659i −0.619784 0.450300i
\(485\) −5.16312 + 3.75123i −0.234445 + 0.170334i
\(486\) −8.00000 + 5.81234i −0.362887 + 0.263653i
\(487\) 7.75329 + 5.63309i 0.351335 + 0.255260i 0.749429 0.662085i \(-0.230328\pi\)
−0.398094 + 0.917345i \(0.630328\pi\)
\(488\) −8.51722 6.18812i −0.385556 0.280123i
\(489\) −8.89919 + 6.46564i −0.402435 + 0.292386i
\(490\) −6.05573 −0.273570
\(491\) −30.1353 21.8945i −1.35999 0.988087i −0.998446 0.0557300i \(-0.982251\pi\)
−0.361539 0.932357i \(-0.617749\pi\)
\(492\) 2.61803 + 8.05748i 0.118030 + 0.363259i
\(493\) 1.05573 0.0475476
\(494\) 5.42705 + 16.7027i 0.244175 + 0.751492i
\(495\) −2.76393 2.00811i −0.124230 0.0902580i
\(496\) −1.71885 + 5.29007i −0.0771785 + 0.237531i
\(497\) 2.19098 6.74315i 0.0982790 0.302472i
\(498\) 0.881966 0.640786i 0.0395218 0.0287143i
\(499\) −12.5623 −0.562366 −0.281183 0.959654i \(-0.590727\pi\)
−0.281183 + 0.959654i \(0.590727\pi\)
\(500\) 14.6353 + 10.6331i 0.654508 + 0.475528i
\(501\) −5.56231 −0.248506
\(502\) 3.40983 2.47739i 0.152188 0.110571i
\(503\) −3.27051 + 10.0656i −0.145825 + 0.448803i −0.997116 0.0758907i \(-0.975820\pi\)
0.851291 + 0.524693i \(0.175820\pi\)
\(504\) −2.23607 + 6.88191i −0.0996024 + 0.306545i
\(505\) 13.5172 + 9.82084i 0.601508 + 0.437021i
\(506\) −1.20163 3.69822i −0.0534188 0.164406i
\(507\) 10.5623 0.469088
\(508\) 7.94427 + 24.4500i 0.352470 + 1.08479i
\(509\) 3.78115 + 2.74717i 0.167597 + 0.121766i 0.668422 0.743782i \(-0.266970\pi\)
−0.500825 + 0.865548i \(0.666970\pi\)
\(510\) −1.05573 −0.0467484
\(511\) −11.7812 + 8.55951i −0.521168 + 0.378650i
\(512\) −15.1353 10.9964i −0.668890 0.485977i
\(513\) −23.6803 17.2048i −1.04551 0.759609i
\(514\) −8.07295 + 5.86534i −0.356083 + 0.258709i
\(515\) 20.9164 15.1967i 0.921687 0.669645i
\(516\) 2.42705 + 1.76336i 0.106845 + 0.0776274i
\(517\) 0.381966 + 1.17557i 0.0167988 + 0.0517015i
\(518\) −4.23607 −0.186122
\(519\) −5.21885 16.0620i −0.229082 0.705042i
\(520\) −19.6353 + 14.2658i −0.861063 + 0.625599i
\(521\) −4.74671 + 14.6089i −0.207957 + 0.640026i 0.791622 + 0.611011i \(0.209237\pi\)
−0.999579 + 0.0290150i \(0.990763\pi\)
\(522\) 0.527864 1.62460i 0.0231040 0.0711067i
\(523\) 16.0623 11.6699i 0.702356 0.510291i −0.178343 0.983968i \(-0.557074\pi\)
0.880699 + 0.473677i \(0.157074\pi\)
\(524\) 28.7984 1.25806
\(525\) −8.09017 −0.353084
\(526\) −13.6525 −0.595276
\(527\) −1.85410 + 1.34708i −0.0807660 + 0.0586799i
\(528\) −0.437694 + 1.34708i −0.0190482 + 0.0586243i
\(529\) 13.8541 42.6385i 0.602352 1.85385i
\(530\) 2.33688 7.19218i 0.101508 0.312408i
\(531\) 2.56231 + 7.88597i 0.111195 + 0.342222i
\(532\) −15.3262 −0.664477
\(533\) 7.85410 + 24.1724i 0.340199 + 1.04702i
\(534\) −4.47214 3.24920i −0.193528 0.140607i
\(535\) −18.8435 13.6906i −0.814674 0.591895i
\(536\) 16.7082 12.1392i 0.721684 0.524334i
\(537\) 7.66312 + 5.56758i 0.330688 + 0.240259i
\(538\) 8.61803 + 6.26137i 0.371550 + 0.269947i
\(539\) −2.70820 + 1.96763i −0.116651 + 0.0847516i
\(540\) 5.59017 17.2048i 0.240563 0.740376i
\(541\) 10.6180 + 7.71445i 0.456505 + 0.331670i 0.792159 0.610315i \(-0.208957\pi\)
−0.335654 + 0.941985i \(0.608957\pi\)
\(542\) −1.52786 4.70228i −0.0656274 0.201980i
\(543\) 13.7082 0.588275
\(544\) −1.32624 4.08174i −0.0568620 0.175003i
\(545\) 6.90983 + 21.2663i 0.295985 + 0.910947i
\(546\) 1.50000 4.61653i 0.0641941 0.197569i
\(547\) −10.7254 + 33.0095i −0.458586 + 1.41138i 0.408287 + 0.912854i \(0.366126\pi\)
−0.866873 + 0.498529i \(0.833874\pi\)
\(548\) 7.78115 5.65334i 0.332394 0.241499i
\(549\) 9.41641 0.401882
\(550\) −2.36068 −0.100660
\(551\) 8.09017 0.344653
\(552\) 14.8992 10.8249i 0.634152 0.460738i
\(553\) −1.54508 + 4.75528i −0.0657037 + 0.202215i
\(554\) −2.15654 + 6.63715i −0.0916227 + 0.281986i
\(555\) 9.47214 0.402070
\(556\) −2.50000 7.69421i −0.106024 0.326307i
\(557\) 9.23607 0.391345 0.195672 0.980669i \(-0.437311\pi\)
0.195672 + 0.980669i \(0.437311\pi\)
\(558\) 1.14590 + 3.52671i 0.0485097 + 0.149298i
\(559\) 7.28115 + 5.29007i 0.307960 + 0.223746i
\(560\) −2.07295 6.37988i −0.0875981 0.269599i
\(561\) −0.472136 + 0.343027i −0.0199336 + 0.0144826i
\(562\) 0.545085 + 0.396027i 0.0229930 + 0.0167054i
\(563\) −7.78115 5.65334i −0.327936 0.238260i 0.411618 0.911356i \(-0.364964\pi\)
−0.739555 + 0.673097i \(0.764964\pi\)
\(564\) −2.11803 + 1.53884i −0.0891853 + 0.0647969i
\(565\) 7.01064 + 21.5765i 0.294940 + 0.907732i
\(566\) 11.5729 + 8.40824i 0.486447 + 0.353425i
\(567\) −0.500000 1.53884i −0.0209980 0.0646253i
\(568\) 9.79837 0.411131
\(569\) 9.10739 + 28.0297i 0.381802 + 1.17506i 0.938774 + 0.344534i \(0.111963\pi\)
−0.556972 + 0.830531i \(0.688037\pi\)
\(570\) −8.09017 −0.338860
\(571\) 9.92705 30.5523i 0.415434 1.27857i −0.496428 0.868078i \(-0.665355\pi\)
0.911862 0.410497i \(-0.134645\pi\)
\(572\) −1.85410 + 5.70634i −0.0775239 + 0.238594i
\(573\) 19.5623 14.2128i 0.817227 0.593750i
\(574\) 5.23607 0.218549
\(575\) −33.3156 24.2052i −1.38936 1.00943i
\(576\) 0.472136 0.0196723
\(577\) −30.5623 + 22.2048i −1.27233 + 0.924399i −0.999293 0.0376062i \(-0.988027\pi\)
−0.273033 + 0.962005i \(0.588027\pi\)
\(578\) −3.13525 + 9.64932i −0.130409 + 0.401359i
\(579\) −1.76393 + 5.42882i −0.0733065 + 0.225614i
\(580\) 1.54508 + 4.75528i 0.0641562 + 0.197452i
\(581\) 0.881966 + 2.71441i 0.0365901 + 0.112613i
\(582\) 1.76393 0.0731173
\(583\) −1.29180 3.97574i −0.0535007 0.164658i
\(584\) −16.2812 11.8290i −0.673719 0.489485i
\(585\) 6.70820 20.6457i 0.277350 0.853596i
\(586\) 14.2361 10.3431i 0.588087 0.427270i
\(587\) −15.1353 10.9964i −0.624699 0.453870i 0.229861 0.973224i \(-0.426173\pi\)
−0.854560 + 0.519353i \(0.826173\pi\)
\(588\) −5.73607 4.16750i −0.236551 0.171865i
\(589\) −14.2082 + 10.3229i −0.585439 + 0.425346i
\(590\) 4.63525 + 3.36771i 0.190830 + 0.138646i
\(591\) 7.85410 + 5.70634i 0.323075 + 0.234727i
\(592\) 2.42705 + 7.46969i 0.0997512 + 0.307003i
\(593\) −22.0902 −0.907135 −0.453567 0.891222i \(-0.649849\pi\)
−0.453567 + 0.891222i \(0.649849\pi\)
\(594\) 0.729490 + 2.24514i 0.0299313 + 0.0921192i
\(595\) 0.854102 2.62866i 0.0350148 0.107764i
\(596\) −6.97214 + 21.4580i −0.285590 + 0.878955i
\(597\) 0.791796 2.43690i 0.0324061 0.0997356i
\(598\) 19.9894 14.5231i 0.817426 0.593894i
\(599\) −0.527864 −0.0215679 −0.0107840 0.999942i \(-0.503433\pi\)
−0.0107840 + 0.999942i \(0.503433\pi\)
\(600\) −3.45492 10.6331i −0.141046 0.434096i
\(601\) 36.2705 1.47950 0.739752 0.672879i \(-0.234943\pi\)
0.739752 + 0.672879i \(0.234943\pi\)
\(602\) 1.50000 1.08981i 0.0611354 0.0444175i
\(603\) −5.70820 + 17.5680i −0.232456 + 0.715426i
\(604\) 2.78115 8.55951i 0.113164 0.348281i
\(605\) 18.8435 13.6906i 0.766096 0.556601i
\(606\) −1.42705 4.39201i −0.0579700 0.178413i
\(607\) −15.4377 −0.626597 −0.313298 0.949655i \(-0.601434\pi\)
−0.313298 + 0.949655i \(0.601434\pi\)
\(608\) −10.1631 31.2789i −0.412169 1.26853i
\(609\) −1.80902 1.31433i −0.0733051 0.0532592i
\(610\) 5.26393 3.82447i 0.213130 0.154848i
\(611\) −6.35410 + 4.61653i −0.257059 + 0.186765i
\(612\) 2.00000 + 1.45309i 0.0808452 + 0.0587375i
\(613\) −25.8713 18.7966i −1.04493 0.759188i −0.0736905 0.997281i \(-0.523478\pi\)
−0.971242 + 0.238093i \(0.923478\pi\)
\(614\) −2.38197 + 1.73060i −0.0961283 + 0.0698413i
\(615\) −11.7082 −0.472120
\(616\) 2.23607 + 1.62460i 0.0900937 + 0.0654569i
\(617\) 3.01722 + 9.28605i 0.121469 + 0.373842i 0.993241 0.116069i \(-0.0370293\pi\)
−0.871772 + 0.489911i \(0.837029\pi\)
\(618\) −7.14590 −0.287450
\(619\) 12.1976 + 37.5402i 0.490261 + 1.50887i 0.824213 + 0.566279i \(0.191618\pi\)
−0.333952 + 0.942590i \(0.608382\pi\)
\(620\) −8.78115 6.37988i −0.352660 0.256222i
\(621\) −12.7254 + 39.1648i −0.510654 + 1.57163i
\(622\) −5.63525 + 17.3435i −0.225953 + 0.695412i
\(623\) 11.7082 8.50651i 0.469079 0.340806i
\(624\) −9.00000 −0.360288
\(625\) −20.2254 + 14.6946i −0.809017 + 0.587785i
\(626\) −13.1246 −0.524565
\(627\) −3.61803 + 2.62866i −0.144490 + 0.104978i
\(628\) 4.59017 14.1271i 0.183168 0.563732i
\(629\) −1.00000 + 3.07768i −0.0398726 + 0.122715i
\(630\) −3.61803 2.62866i −0.144146 0.104728i
\(631\) −1.78115 5.48183i −0.0709066 0.218228i 0.909323 0.416090i \(-0.136600\pi\)
−0.980230 + 0.197862i \(0.936600\pi\)
\(632\) −6.90983 −0.274858
\(633\) 4.07295 + 12.5352i 0.161885 + 0.498231i
\(634\) 11.8262 + 8.59226i 0.469680 + 0.341242i
\(635\) −35.5279 −1.40988
\(636\) 7.16312 5.20431i 0.284036 0.206364i
\(637\) −17.2082 12.5025i −0.681814 0.495367i
\(638\) −0.527864 0.383516i −0.0208983 0.0151835i
\(639\) −7.09017 + 5.15131i −0.280483 + 0.203783i
\(640\) 20.5902 14.9596i 0.813898 0.591331i
\(641\) −8.16312 5.93085i −0.322424 0.234255i 0.414785 0.909919i \(-0.363857\pi\)
−0.737209 + 0.675665i \(0.763857\pi\)
\(642\) 1.98936 + 6.12261i 0.0785137 + 0.241640i
\(643\) 22.8328 0.900438 0.450219 0.892918i \(-0.351346\pi\)
0.450219 + 0.892918i \(0.351346\pi\)
\(644\) 6.66312 + 20.5070i 0.262564 + 0.808088i
\(645\) −3.35410 + 2.43690i −0.132068 + 0.0959528i
\(646\) 0.854102 2.62866i 0.0336042 0.103423i
\(647\) 9.43769 29.0462i 0.371034 1.14193i −0.575082 0.818096i \(-0.695030\pi\)
0.946116 0.323829i \(-0.104970\pi\)
\(648\) 1.80902 1.31433i 0.0710649 0.0516317i
\(649\) 3.16718 0.124323
\(650\) −4.63525 14.2658i −0.181810 0.559553i
\(651\) 4.85410 0.190247
\(652\) 14.3992 10.4616i 0.563916 0.409709i
\(653\) 2.44427 7.52270i 0.0956518 0.294386i −0.891771 0.452487i \(-0.850537\pi\)
0.987423 + 0.158101i \(0.0505371\pi\)
\(654\) 1.90983 5.87785i 0.0746803 0.229842i
\(655\) −12.2984 + 37.8505i −0.480537 + 1.47894i
\(656\) −3.00000 9.23305i −0.117130 0.360490i
\(657\) 18.0000 0.702247
\(658\) 0.500000 + 1.53884i 0.0194920 + 0.0599903i
\(659\) −19.7984 14.3844i −0.771235 0.560335i 0.131101 0.991369i \(-0.458149\pi\)
−0.902336 + 0.431034i \(0.858149\pi\)
\(660\) −2.23607 1.62460i −0.0870388 0.0632374i
\(661\) 32.9164 23.9152i 1.28030 0.930192i 0.280738 0.959784i \(-0.409421\pi\)
0.999562 + 0.0295922i \(0.00942086\pi\)
\(662\) −8.56231 6.22088i −0.332783 0.241781i
\(663\) −3.00000 2.17963i −0.116510 0.0846497i
\(664\) −3.19098 + 2.31838i −0.123834 + 0.0899708i
\(665\) 6.54508 20.1437i 0.253808 0.781139i
\(666\) 4.23607 + 3.07768i 0.164144 + 0.119258i
\(667\) −3.51722 10.8249i −0.136187 0.419142i
\(668\) 9.00000 0.348220
\(669\) 6.85410 + 21.0948i 0.264995 + 0.815570i
\(670\) 3.94427 + 12.1392i 0.152381 + 0.468979i
\(671\) 1.11146 3.42071i 0.0429073 0.132055i
\(672\) −2.80902 + 8.64527i −0.108360 + 0.333498i
\(673\) 8.23607 5.98385i 0.317477 0.230661i −0.417621 0.908621i \(-0.637136\pi\)
0.735098 + 0.677961i \(0.237136\pi\)
\(674\) 0.708204 0.0272790
\(675\) 20.2254 + 14.6946i 0.778477 + 0.565597i
\(676\) −17.0902 −0.657314
\(677\) −6.78115 + 4.92680i −0.260621 + 0.189352i −0.710421 0.703777i \(-0.751495\pi\)
0.449800 + 0.893129i \(0.351495\pi\)
\(678\) 1.93769 5.96361i 0.0744167 0.229031i
\(679\) −1.42705 + 4.39201i −0.0547652 + 0.168550i
\(680\) 3.81966 0.146477
\(681\) 5.94427 + 18.2946i 0.227785 + 0.701050i
\(682\) 1.41641 0.0542371
\(683\) −1.39919 4.30625i −0.0535384 0.164774i 0.920712 0.390242i \(-0.127609\pi\)
−0.974251 + 0.225468i \(0.927609\pi\)
\(684\) 15.3262 + 11.1352i 0.586013 + 0.425764i
\(685\) 4.10739 + 12.6412i 0.156935 + 0.482997i
\(686\) −9.20820 + 6.69015i −0.351571 + 0.255431i
\(687\) −6.70820 4.87380i −0.255934 0.185947i
\(688\) −2.78115 2.02063i −0.106030 0.0770356i
\(689\) 21.4894 15.6129i 0.818679 0.594805i
\(690\) 3.51722 + 10.8249i 0.133898 + 0.412097i
\(691\) −2.20820 1.60435i −0.0840040 0.0610325i 0.544991 0.838442i \(-0.316533\pi\)
−0.628995 + 0.777410i \(0.716533\pi\)
\(692\) 8.44427 + 25.9888i 0.321003 + 0.987946i
\(693\) −2.47214 −0.0939087
\(694\) −5.93769 18.2743i −0.225392 0.693685i
\(695\) 11.1803 0.424094
\(696\) 0.954915 2.93893i 0.0361960 0.111400i
\(697\) 1.23607 3.80423i 0.0468194 0.144095i
\(698\) −4.14590 + 3.01217i −0.156925 + 0.114012i
\(699\) 14.9443 0.565244
\(700\) 13.0902 0.494762
\(701\) 35.0132 1.32243 0.661214 0.750197i \(-0.270041\pi\)
0.661214 + 0.750197i \(0.270041\pi\)
\(702\) −12.1353 + 8.81678i −0.458016 + 0.332768i
\(703\) −7.66312 + 23.5847i −0.289020 + 0.889512i
\(704\) 0.0557281 0.171513i 0.00210033 0.00646416i
\(705\) −1.11803 3.44095i −0.0421076 0.129594i
\(706\) 4.60081 + 14.1598i 0.173154 + 0.532913i
\(707\) 12.0902 0.454698
\(708\) 2.07295 + 6.37988i 0.0779062 + 0.239771i
\(709\) −27.1353 19.7149i −1.01909 0.740409i −0.0529906 0.998595i \(-0.516875\pi\)
−0.966095 + 0.258186i \(0.916875\pi\)
\(710\) −1.87132 + 5.75934i −0.0702295 + 0.216144i
\(711\) 5.00000 3.63271i 0.187515 0.136237i
\(712\) 16.1803 + 11.7557i 0.606384 + 0.440564i
\(713\) 19.9894 + 14.5231i 0.748607 + 0.543895i
\(714\) −0.618034 + 0.449028i −0.0231293 + 0.0168044i
\(715\) −6.70820 4.87380i −0.250873 0.182270i
\(716\) −12.3992 9.00854i −0.463379 0.336665i
\(717\) −9.10739 28.0297i −0.340122 1.04679i
\(718\) −17.7639 −0.662944
\(719\) −11.3435 34.9116i −0.423040 1.30198i −0.904859 0.425712i \(-0.860024\pi\)
0.481819 0.876271i \(-0.339976\pi\)
\(720\) −2.56231 + 7.88597i −0.0954915 + 0.293893i
\(721\) 5.78115 17.7926i 0.215301 0.662630i
\(722\) 2.91641 8.97578i 0.108537 0.334044i
\(723\) −9.28115 + 6.74315i −0.345170 + 0.250781i
\(724\) −22.1803 −0.824326
\(725\) −6.90983 −0.256625
\(726\) −6.43769 −0.238925
\(727\) −3.59017 + 2.60841i −0.133152 + 0.0967406i −0.652368 0.757903i \(-0.726224\pi\)
0.519216 + 0.854643i \(0.326224\pi\)
\(728\) −5.42705 + 16.7027i −0.201140 + 0.619045i
\(729\) 4.01722 12.3637i 0.148786 0.457916i
\(730\) 10.0623 7.31069i 0.372423 0.270581i
\(731\) −0.437694 1.34708i −0.0161887 0.0498237i
\(732\) 7.61803 0.281571
\(733\) 8.33688 + 25.6583i 0.307930 + 0.947710i 0.978568 + 0.205925i \(0.0660204\pi\)
−0.670638 + 0.741785i \(0.733980\pi\)
\(734\) 2.71885 + 1.97536i 0.100354 + 0.0729118i
\(735\) 7.92705 5.75934i 0.292394 0.212436i
\(736\) −37.4336 + 27.1971i −1.37982 + 1.00250i
\(737\) 5.70820 + 4.14725i 0.210264 + 0.152766i
\(738\) −5.23607 3.80423i −0.192742 0.140035i
\(739\) 25.0623 18.2088i 0.921932 0.669823i −0.0220723 0.999756i \(-0.507026\pi\)
0.944004 + 0.329934i \(0.107026\pi\)
\(740\) −15.3262 −0.563404
\(741\) −22.9894 16.7027i −0.844535 0.613591i
\(742\) −1.69098 5.20431i −0.0620779 0.191056i
\(743\) −16.3607 −0.600215 −0.300108 0.953905i \(-0.597023\pi\)
−0.300108 + 0.953905i \(0.597023\pi\)
\(744\) 2.07295 + 6.37988i 0.0759980 + 0.233898i
\(745\) −25.2254 18.3273i −0.924188 0.671462i
\(746\) 1.00658 3.09793i 0.0368534 0.113423i
\(747\) 1.09017 3.35520i 0.0398872 0.122760i
\(748\) 0.763932 0.555029i 0.0279321 0.0202939i
\(749\) −16.8541 −0.615835
\(750\) 6.90983 0.252311
\(751\) −40.8885 −1.49204 −0.746022 0.665921i \(-0.768039\pi\)
−0.746022 + 0.665921i \(0.768039\pi\)
\(752\) 2.42705 1.76336i 0.0885054 0.0643030i
\(753\) −2.10739 + 6.48588i −0.0767976 + 0.236359i
\(754\) 1.28115 3.94298i 0.0466568 0.143595i
\(755\) 10.0623 + 7.31069i 0.366205 + 0.266063i
\(756\) −4.04508 12.4495i −0.147118 0.452784i
\(757\) 3.58359 0.130248 0.0651239 0.997877i \(-0.479256\pi\)
0.0651239 + 0.997877i \(0.479256\pi\)
\(758\) −6.60739 20.3355i −0.239991 0.738617i
\(759\) 5.09017 + 3.69822i 0.184761 + 0.134237i
\(760\) 29.2705 1.06175
\(761\) −30.2984 + 22.0131i −1.09832 + 0.797973i −0.980784 0.195096i \(-0.937498\pi\)
−0.117531 + 0.993069i \(0.537498\pi\)
\(762\) 7.94427 + 5.77185i 0.287791 + 0.209092i
\(763\) 13.0902 + 9.51057i 0.473896 + 0.344306i
\(764\) −31.6525 + 22.9969i −1.14515 + 0.831998i
\(765\) −2.76393 + 2.00811i −0.0999302 + 0.0726035i
\(766\) 5.68034 + 4.12701i 0.205239 + 0.149115i
\(767\) 6.21885 + 19.1396i 0.224550 + 0.691092i