Properties

Label 25.2.d
Level $25$
Weight $2$
Character orbit 25.d
Rep. character $\chi_{25}(6,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $4$
Newform subspaces $1$
Sturm bound $5$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 25.d (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 1 \)
Sturm bound: \(5\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(25, [\chi])\).

Total New Old
Modular forms 12 12 0
Cusp forms 4 4 0
Eisenstein series 8 8 0

Trace form

\( 4 q - 2 q^{2} - q^{3} - 2 q^{4} - 5 q^{5} + 3 q^{6} - 2 q^{7} - 5 q^{8} + 2 q^{9} + 10 q^{10} - 2 q^{11} + 3 q^{12} + 9 q^{13} + q^{14} - 5 q^{15} - 6 q^{16} + 8 q^{17} + 4 q^{18} - 5 q^{19} + 5 q^{20}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(25, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
25.2.d.a 25.d 25.d $4$ $0.200$ \(\Q(\zeta_{10})\) None 25.2.d.a \(-2\) \(-1\) \(-5\) \(-2\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-\zeta_{10}+\zeta_{10}^{2})q^{2}-\zeta_{10}^{3}q^{3}+(-1+\cdots)q^{4}+\cdots\)