Properties

Label 25.2.d
Level 25
Weight 2
Character orbit d
Rep. character \(\chi_{25}(6,\cdot)\)
Character field \(\Q(\zeta_{5})\)
Dimension 4
Newforms 1
Sturm bound 5
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 25 = 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 25.d (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Newforms: \( 1 \)
Sturm bound: \(5\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(25, [\chi])\).

Total New Old
Modular forms 12 12 0
Cusp forms 4 4 0
Eisenstein series 8 8 0

Trace form

\( 4q - 2q^{2} - q^{3} - 2q^{4} - 5q^{5} + 3q^{6} - 2q^{7} - 5q^{8} + 2q^{9} + O(q^{10}) \) \( 4q - 2q^{2} - q^{3} - 2q^{4} - 5q^{5} + 3q^{6} - 2q^{7} - 5q^{8} + 2q^{9} + 10q^{10} - 2q^{11} + 3q^{12} + 9q^{13} + q^{14} - 5q^{15} - 6q^{16} + 8q^{17} + 4q^{18} - 5q^{19} + 5q^{20} - 2q^{21} - 14q^{22} - 11q^{23} - 5q^{25} - 12q^{26} + 5q^{27} + q^{28} + 5q^{29} - 5q^{30} + 3q^{31} + 18q^{32} + 8q^{33} + 6q^{34} + 5q^{35} - 6q^{36} - 7q^{37} + 5q^{38} + 9q^{39} + 5q^{40} + 8q^{41} + q^{42} - 6q^{43} + 6q^{44} - 10q^{45} + 13q^{46} - 2q^{47} - 6q^{48} - 22q^{49} - 10q^{50} - 12q^{51} - 12q^{52} + 9q^{53} - 15q^{54} + 20q^{55} - 10q^{57} - 10q^{58} + 13q^{61} + 6q^{62} - 6q^{63} + 3q^{64} + 6q^{66} - 2q^{67} - 4q^{68} - q^{69} + 8q^{71} + 10q^{72} + 9q^{73} + 6q^{74} + 20q^{75} + 20q^{76} - 4q^{77} + 3q^{78} + 15q^{79} - 15q^{80} - q^{81} - 4q^{82} + 9q^{83} - 4q^{84} - 20q^{85} + 3q^{86} - 10q^{88} - 20q^{89} - 12q^{91} - 12q^{92} - 12q^{93} + q^{94} - 5q^{95} - 2q^{96} + 8q^{97} + 11q^{98} + 24q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(25, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
25.2.d.a \(4\) \(0.200\) \(\Q(\zeta_{10})\) None \(-2\) \(-1\) \(-5\) \(-2\) \(q+(-\zeta_{10}+\zeta_{10}^{2})q^{2}-\zeta_{10}^{3}q^{3}+(-1+\cdots)q^{4}+\cdots\)