Newspace parameters
Level: | \( N \) | \(=\) | \( 25 = 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 16 \) |
Character orbit: | \([\chi]\) | \(=\) | 25.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(35.6733762750\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-1}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 1) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/25\mathbb{Z}\right)^\times\).
\(n\) | \(2\) |
\(\chi(n)\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
24.1 |
|
− | 216.000i | − | 3348.00i | −13888.0 | 0 | −723168. | − | 2.82246e6i | − | 4.07808e6i | 3.13980e6 | 0 | ||||||||||||||||||||
24.2 | 216.000i | 3348.00i | −13888.0 | 0 | −723168. | 2.82246e6i | 4.07808e6i | 3.13980e6 | 0 | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 25.16.b.a | 2 | |
5.b | even | 2 | 1 | inner | 25.16.b.a | 2 | |
5.c | odd | 4 | 1 | 1.16.a.a | ✓ | 1 | |
5.c | odd | 4 | 1 | 25.16.a.a | 1 | ||
15.e | even | 4 | 1 | 9.16.a.a | 1 | ||
20.e | even | 4 | 1 | 16.16.a.d | 1 | ||
35.f | even | 4 | 1 | 49.16.a.a | 1 | ||
35.k | even | 12 | 2 | 49.16.c.b | 2 | ||
35.l | odd | 12 | 2 | 49.16.c.c | 2 | ||
40.i | odd | 4 | 1 | 64.16.a.i | 1 | ||
40.k | even | 4 | 1 | 64.16.a.c | 1 | ||
55.e | even | 4 | 1 | 121.16.a.a | 1 | ||
60.l | odd | 4 | 1 | 144.16.a.f | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1.16.a.a | ✓ | 1 | 5.c | odd | 4 | 1 | |
9.16.a.a | 1 | 15.e | even | 4 | 1 | ||
16.16.a.d | 1 | 20.e | even | 4 | 1 | ||
25.16.a.a | 1 | 5.c | odd | 4 | 1 | ||
25.16.b.a | 2 | 1.a | even | 1 | 1 | trivial | |
25.16.b.a | 2 | 5.b | even | 2 | 1 | inner | |
49.16.a.a | 1 | 35.f | even | 4 | 1 | ||
49.16.c.b | 2 | 35.k | even | 12 | 2 | ||
49.16.c.c | 2 | 35.l | odd | 12 | 2 | ||
64.16.a.c | 1 | 40.k | even | 4 | 1 | ||
64.16.a.i | 1 | 40.i | odd | 4 | 1 | ||
121.16.a.a | 1 | 55.e | even | 4 | 1 | ||
144.16.a.f | 1 | 60.l | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} + 46656 \)
acting on \(S_{16}^{\mathrm{new}}(25, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} + 46656 \)
$3$
\( T^{2} + 11209104 \)
$5$
\( T^{2} \)
$7$
\( T^{2} + 7966257871936 \)
$11$
\( (T - 20586852)^{2} \)
$13$
\( T^{2} + 36\!\cdots\!44 \)
$17$
\( T^{2} + 27\!\cdots\!96 \)
$19$
\( (T + 1563257180)^{2} \)
$23$
\( T^{2} + 89\!\cdots\!84 \)
$29$
\( (T - 36902568330)^{2} \)
$31$
\( (T - 71588483552)^{2} \)
$37$
\( T^{2} + 10\!\cdots\!16 \)
$41$
\( (T - 1641974018202)^{2} \)
$43$
\( T^{2} + 24\!\cdots\!64 \)
$47$
\( T^{2} + 11\!\cdots\!76 \)
$53$
\( T^{2} + 46\!\cdots\!04 \)
$59$
\( (T + 9858856815540)^{2} \)
$61$
\( (T - 4931842626902)^{2} \)
$67$
\( T^{2} + 83\!\cdots\!96 \)
$71$
\( (T - 125050114914552)^{2} \)
$73$
\( T^{2} + 67\!\cdots\!84 \)
$79$
\( (T - 25413078694480)^{2} \)
$83$
\( T^{2} + 79\!\cdots\!24 \)
$89$
\( (T + 715618564776810)^{2} \)
$97$
\( T^{2} + 37\!\cdots\!76 \)
show more
show less