Properties

Label 25.14.a.e
Level $25$
Weight $14$
Character orbit 25.a
Self dual yes
Analytic conductor $26.808$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [25,14,Mod(1,25)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("25.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(25, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 25.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.8077322380\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 9276x^{4} + 17959899x^{2} - 616730624 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{4}\cdot 5^{6} \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + ( - \beta_{2} + \beta_1) q^{3} + (\beta_{3} + 5492) q^{4} + ( - \beta_{4} + 9 \beta_{3} + 19492) q^{6} + ( - \beta_{5} - 66 \beta_{2} - 716 \beta_1) q^{7} + (2 \beta_{5} - 214 \beta_{2} + 3102 \beta_1) q^{8}+ \cdots + (51598602 \beta_{4} + \cdots + 5152581102636) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 32952 q^{4} + 116952 q^{6} + 7093638 q^{9} + 6217992 q^{11} - 56525256 q^{14} - 7721184 q^{16} + 60021000 q^{19} + 1000810872 q^{21} + 3917436000 q^{24} + 10130482512 q^{26} - 2395934100 q^{29} + 19077466752 q^{31}+ \cdots + 30915486615816 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 9276x^{4} + 17959899x^{2} - 616730624 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{5} + 34300\nu^{3} - 148003099\nu ) / 21420000 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} - 34300\nu^{3} + 469303099\nu ) / 10710000 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -4\nu^{4} + 32200\nu^{2} - 32729896 ) / 2625 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 68\nu^{4} - 284900\nu^{2} - 255241768 ) / 2625 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 17011\nu^{5} - 155077300\nu^{3} + 287387477089\nu ) / 4284000 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 2\beta_1 ) / 30 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{4} + 17\beta_{3} + 309200 ) / 100 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{5} + 52061\beta_{2} + 359287\beta_1 ) / 300 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 322\beta_{4} + 2849\beta_{3} + 66832504 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 10290\beta_{5} + 30566131\beta_{2} + 293748212\beta_1 ) / 30 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
51.9014
−80.9153
5.91342
−5.91342
80.9153
−51.9014
−152.321 −2014.00 15009.6 0 306775. 69973.1 −1.03846e6 2.46189e6 0
1.2 −127.310 2045.53 8015.83 0 −260416. 258383. 22427.7 2.58986e6 0
1.3 −40.5284 −298.988 −6549.45 0 12117.5 −377278. 597447. −1.50493e6 0
1.4 40.5284 298.988 −6549.45 0 12117.5 377278. −597447. −1.50493e6 0
1.5 127.310 −2045.53 8015.83 0 −260416. −258383. −22427.7 2.58986e6 0
1.6 152.321 2014.00 15009.6 0 306775. −69973.1 1.03846e6 2.46189e6 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 25.14.a.e 6
5.b even 2 1 inner 25.14.a.e 6
5.c odd 4 2 5.14.b.a 6
15.e even 4 2 45.14.b.b 6
20.e even 4 2 80.14.c.c 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.14.b.a 6 5.c odd 4 2
25.14.a.e 6 1.a even 1 1 trivial
25.14.a.e 6 5.b even 2 1 inner
45.14.b.b 6 15.e even 4 2
80.14.c.c 6 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 41052T_{2}^{4} + 440779968T_{2}^{2} - 617678127104 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(25))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + \cdots - 617678127104 \) Copy content Toggle raw display
$3$ \( T^{6} + \cdots - 15\!\cdots\!36 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots - 46\!\cdots\!44 \) Copy content Toggle raw display
$11$ \( (T^{3} + \cdots - 39\!\cdots\!68)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots - 52\!\cdots\!16 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 19\!\cdots\!24 \) Copy content Toggle raw display
$19$ \( (T^{3} + \cdots + 45\!\cdots\!00)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 38\!\cdots\!96 \) Copy content Toggle raw display
$29$ \( (T^{3} + \cdots + 48\!\cdots\!00)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + \cdots + 18\!\cdots\!12)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 17\!\cdots\!84 \) Copy content Toggle raw display
$41$ \( (T^{3} + \cdots - 19\!\cdots\!48)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 85\!\cdots\!56 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 55\!\cdots\!64 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 41\!\cdots\!36 \) Copy content Toggle raw display
$59$ \( (T^{3} + \cdots - 10\!\cdots\!00)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + \cdots - 18\!\cdots\!68)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 19\!\cdots\!24 \) Copy content Toggle raw display
$71$ \( (T^{3} + \cdots + 50\!\cdots\!72)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 80\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( (T^{3} + \cdots - 11\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 63\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( (T^{3} + \cdots + 20\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 15\!\cdots\!64 \) Copy content Toggle raw display
show more
show less