Properties

Label 25.14.a.d
Level $25$
Weight $14$
Character orbit 25.a
Self dual yes
Analytic conductor $26.808$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [25,14,Mod(1,25)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("25.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(25, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 25.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,65] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.8077322380\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 17722x^{2} + 125608x + 10385664 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 16) q^{2} + (\beta_{2} + \beta_1 + 215) q^{3} + (\beta_{3} + 23 \beta_1 + 928) q^{4} + (6 \beta_{3} + 20 \beta_{2} + \cdots + 10048) q^{6} + (40 \beta_{3} - 66 \beta_{2} + \cdots + 25454) q^{7}+ \cdots + ( - 692878296 \beta_{3} + \cdots + 372618872450) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 65 q^{2} + 860 q^{3} + 3733 q^{4} + 40333 q^{6} + 102800 q^{7} + 329895 q^{8} + 47872 q^{9} + 6675428 q^{11} - 520595 q^{12} + 4926920 q^{13} + 37103466 q^{14} - 8440751 q^{16} + 50416220 q^{17} + 22302110 q^{18}+ \cdots + 1425639838304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 17722x^{2} + 125608x + 10385664 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 3\nu^{2} - 16570\nu + 58416 ) / 228 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 9\nu - 8864 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 9\beta _1 + 8864 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -3\beta_{3} + 228\beta_{2} + 16597\beta _1 - 85008 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−133.966
−21.1633
28.7600
127.370
−117.966 −235.672 5724.04 0 27801.3 227749. 291136. −1.53878e6 0
1.2 −5.16335 1952.42 −8165.34 0 −10081.0 −455997. 84458.7 2.21763e6 0
1.3 44.7600 −1474.96 −6188.54 0 −66019.0 −143529. −643673. 581170. 0
1.4 143.370 618.204 12362.8 0 88631.7 474578. 597973. −1.21215e6 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 25.14.a.d yes 4
5.b even 2 1 25.14.a.c 4
5.c odd 4 2 25.14.b.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
25.14.a.c 4 5.b even 2 1
25.14.a.d yes 4 1.a even 1 1 trivial
25.14.b.c 8 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 65T_{2}^{3} - 16138T_{2}^{2} + 675560T_{2} + 3908736 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(25))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 65 T^{3} + \cdots + 3908736 \) Copy content Toggle raw display
$3$ \( T^{4} + \cdots + 419557862781 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 70\!\cdots\!96 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 60\!\cdots\!01 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 31\!\cdots\!16 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots - 86\!\cdots\!59 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 91\!\cdots\!25 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 72\!\cdots\!76 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 20\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 30\!\cdots\!04 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 27\!\cdots\!44 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 25\!\cdots\!81 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 51\!\cdots\!04 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 73\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 14\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 47\!\cdots\!76 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 30\!\cdots\!41 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 91\!\cdots\!64 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 14\!\cdots\!01 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 19\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 43\!\cdots\!39 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 17\!\cdots\!25 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 10\!\cdots\!24 \) Copy content Toggle raw display
show more
show less